Q: 这篇论文试图解决什么问题?
A: 这篇论文提出了一种名为“PDiT:Interleaving Perception and Decision-making Transformers for Deep Reinforcement Learning”的新网络架构,旨在解决深度强化学习(Deep Reinforcement Learning,简称DRL)中感知(Perception)和决策(Decision-making)的整合问题。具体来说,它试图通过专门化这两个功能来提升DRL模型的性能和可解释性。 在DRL中,智能体需要通过感知环境来做出决策以最大化累积奖励。处理多模态数据(如图像、语言和传感器数据)的环境是一个挑战。现有的DRL模型通常需要为特定模态选择相应的感知模块,并且当环境包含多种模态时,这变得更加复杂。为了解决这个问题,论文提出了PDiT网络,它通过两个Transformer来专门化感知和决策功能: 1. 感知Transformer(Perceiver):专注于环境感知,通过在补丁(patch)级别处理观察来学习良好的环境理解。 2. 决策Transformer(Decision-maker):专注于决策制定,通过条件化历史期望回报、感知器的输出和动作来生成动作。 PDiT的设计允许信息在每个PDiT块中完全融合,同时保持感