PDiT: Interleaving Perception and Decision-making Transformers for Deep Reinforcement Learning

论文介绍了一种新网络架构PDiT,通过分离和交织感知与决策Transformer,提升DRL性能和可解释性。实验显示PDiT在各种环境和任务中优于基线,且具有扩展性和解释性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Q: 这篇论文试图解决什么问题?

A: 这篇论文提出了一种名为“PDiT:Interleaving Perception and Decision-making Transformers for Deep Reinforcement Learning”的新网络架构,旨在解决深度强化学习(Deep Reinforcement Learning,简称DRL)中感知(Perception)和决策(Decision-making)的整合问题。具体来说,它试图通过专门化这两个功能来提升DRL模型的性能和可解释性。 在DRL中,智能体需要通过感知环境来做出决策以最大化累积奖励。处理多模态数据(如图像、语言和传感器数据)的环境是一个挑战。现有的DRL模型通常需要为特定模态选择相应的感知模块,并且当环境包含多种模态时,这变得更加复杂。为了解决这个问题,论文提出了PDiT网络,它通过两个Transformer来专门化感知和决策功能: 1. 感知Transformer(Perceiver):专注于环境感知,通过在补丁(patch)级别处理观察来学习良好的环境理解。 2. 决策Transformer(Decision-maker):专注于决策制定,通过条件化历史期望回报、感知器的输出和动作来生成动作。 PDiT的设计允许信息在每个PDiT块中完全融合,同时保持感

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值