Q: 这篇论文试图解决什么问题?
A: 这篇论文旨在通过直接偏好优化(DPO)算法和毒性(toxicity)的案例研究,深入理解对齐算法(alignment algorithms)的机制。具体来说,论文试图解决以下问题:
-
理解模型对齐的机制:尽管对齐算法被广泛用于调整预训练语言模型以符合用户的偏好,但我们对于模型如何变得“对齐”的底层机制了解有限,这使得解释诸如“越狱”(jailbreaks)这样的现象变得困难。
-
毒性在预训练语言模型中的表示和引发方式:论文首先研究了毒性如何在预训练语言模型(如GPT2-medium)中表示和被引发。
-
DPO如何减少毒性:接着,论文应用DPO算法,使用精心设计的成对数据集来减少毒性,并研究了DPO后模型如何避免产生毒性输出。
-
对齐机制的脆弱性:论文还探讨了DPO学习到的对齐机制如何可能被轻易地撤销(undo),即模型可能重新表现出毒性行为。
通过这些研究,论文提供了对齐算法现象的机制性解释,并探讨了如何设计更健壮的对齐算法以防止模型被轻易地“越狱”。