LLM Augmented LLMs: Expanding Capabilities through Composition

论文介绍了一种名为CALM的方法,通过引入交叉注意力机制,有效组合基础模型与特定领域的增强模型,提升新任务能力。实验显示在语言包容性和代码生成任务中,CALM表现出色且参数效率高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Q: 这篇论文试图解决什么问题?

A: 这篇论文试图解决的问题是如何有效地将现有的基础模型(Foundation Models,简称LLMs)与更具体的模型结合起来,以赋予它们新的技能和能力。由于LLMs的庞大结构,给它们增加新技能或进行调整既困难又昂贵。而另一方面,为了适应新领域和任务,许多新的LLM实例正在被训练。因此,论文提出了一种名为CALM(Composition to Augment Language Models)的方法,通过在模型之间引入交叉注意力(cross-attention)来组合它们的表示,并启用新的能力。

CALM的主要特点包括:

  1. 通过“重用”现有的LLMs以及少量额外的参数和数据,扩展LLMs在新任务上的能力。

  2. 保持现有模型权重不变,从而保留现有能力。

  3. 适用于多种领域和设置。

论文通过实验展示了CALM在语言包容性(例如,将低资源语言翻译成英语和解决低资源语言的算术问题)和代码生成(例如,代码解释和代码补全)方面的有效性。

Q: 有哪些相关研究?

A: 这篇论文提到了以下几类相关的研究:

  1. 参数高效微调(Parameter

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值