Q: 这篇论文试图解决什么问题?
A: 这篇论文试图解决的问题是如何有效地将现有的基础模型(Foundation Models,简称LLMs)与更具体的模型结合起来,以赋予它们新的技能和能力。由于LLMs的庞大结构,给它们增加新技能或进行调整既困难又昂贵。而另一方面,为了适应新领域和任务,许多新的LLM实例正在被训练。因此,论文提出了一种名为CALM(Composition to Augment Language Models)的方法,通过在模型之间引入交叉注意力(cross-attention)来组合它们的表示,并启用新的能力。
CALM的主要特点包括:
-
通过“重用”现有的LLMs以及少量额外的参数和数据,扩展LLMs在新任务上的能力。
-
保持现有模型权重不变,从而保留现有能力。
-
适用于多种领域和设置。
论文通过实验展示了CALM在语言包容性(例如,将低资源语言翻译成英语和解决低资源语言的算术问题)和代码生成(例如,代码解释和代码补全)方面的有效性。
Q: 有哪些相关研究?
A: 这篇论文提到了以下几类相关的研究:
-
参数高效微调(Parameter