人工智能的普及神器:DJL Serving解读

本文介绍了DJLServing,一个由DeepJavaLibrary团队开发的开源模型部署工具,支持多种模型类型,具备卓越性能、易用扩展和自动伸缩等功能,适用于AI项目的生产环境部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在当今的人工智能领域,模型部署的重要性不言而喻。你是否曾困惑于如何将训练好的模型高效地部署到生产环境呢?🤔 今天,就让我们一起探索一个开源的、通用的、可扩展的机器学习模型部署解决方案——DJL Serving

什么是DJL Serving?🔍

**DJL Serving是由深度Java库(Deep Java Library,简称DJL)**团队推出的一个高性能的通用模型服务方案。它可以将一个或多个深度学习模型,甚至是完整的工作流,通过HTTP端点提供服务。简而言之,DJL Serving就像是一个智能模型的分发员,帮助你将模型从实验室搬到了用户的面前。

支持的模型类型 📦

DJL Serving支持以下模型类型:

  • PyTorch TorchScript模型
  • TensorFlow SavedModel包
  • Apache MXNet模型
  • ONNX模型(CPU)
  • TensorRT模型
  • Python脚本模型

此外,还可以通过安装额外的扩展来支持:

  • PaddlePaddle模型
  • TFLite模型
  • XGBoost模型
  • LightGBM模型
  • Sentencepiece模型
  • fastText/BlazingText模型

核心功能 ✨

  • 性能卓越:DJL Serving在单个JVM中运行多线程推理,其基准测试显示其吞吐量超过市面上大多数C++模型服务器。
  • 易于使用:大多数模型可以即拔即用。
  • 易于扩展:插件化设计让自定义扩展变得简单。
  • 自动伸缩:基于负载自动伸缩工作线程。
  • 动态批处理:支持动态批处理以提高吞吐量。
  • 模型版本控制:允许在单个端点加载不同版本的模型。
  • 多引擎支持:能够同时服务来自不同引擎的模型。

安装方式 🛠️

无论你是使用 macOSUbuntu还是Windows,DJL Serving都有相应的安装包。DJL Serving还提供了Docker容器,可以让你在隔离的环境中轻松运行。

使用方法 📘

DJL Serving可以从命令行启动。只需简单的命令就能够启动服务,并且提供了丰富的命令行选项,帮助你加载模型,设置模型存储位置,以及启动工作流。

REST API 🌐

DJL Serving使用RESTful API进行推理和管理调用。服务启动后,会提供两个web服务:

  • 推理API:客户端用来查询服务器和运行模型。
  • 管理API:用于在服务器上添加、移除和伸缩模型。

默认情况下,DJL Serving监听8080端口,并且仅从localhost可访问。你可以通过配置来启用远程主机访问。

架构和插件管理 🏗️

DJL Serving的具体实现细节,可以在它的架构文档中找到。此外,DJL Serving支持插件,你可以实现自己的插件来丰富DJL Serving的功能。

结语 🌟

DJL Serving不仅仅是一个模型部署工具,它是连接模型开发和实际应用的桥梁。它的出现,让# 🌟 DJL Serving:打造AI模型部署的新高度 🚀
在AI的浪潮中,让我们与DJL Serving一起,乘风破浪,探索无限可能!🚢🌟

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值