RLCard支持多种纸牌环境,包括21点(Blackjack)、Leduc Hold’em、德州扑克(Texas Hold’em)、UNO、斗地主(Dou Dizhu)和麻将(Mahjong)。该工具包的目标是连接强化学习和不完全信息游戏,并推动在具有多个代理、大状态和动作空间以及稀疏奖励的领域中的强化学习研究。
文章概述了RLCard的关键组件、设计原则、接口简介以及环境的综合评估。代码和文档可在GitHub上找到。强化学习(RL)是人工智能中一个有前景的范式,用于学习目标导向的任务。通过与环境的互动,强化学习代理学会在每个状态下做出决策。随着神经网络作为函数逼近器,深度强化学习在多个领域取得了突破,例如Atari游戏、围棋、连续控制和神经架构搜索等。
然而,在具有多个代理、大决策空间或稀疏奖励的应用中,强化学习仍然不成熟且不稳定。本文介绍了各种风格的纸牌环境,用于强化学习研究。纸牌游戏是理想的测试平台,因为它们具有多个挑战:首先,纸牌游戏由多个代理参与,必须学会相互竞争或合作;其次,纸牌游戏具有巨大的状态空间;第三,纸牌游戏可能具有大的动作空间;最后,纸牌游戏可能遭受稀疏奖励的问题。
RLCard旨在通过提供易于使用的接口来开发具有易于使用的纸牌环境,这些接口必须对可能具有或没有游戏理论背景的RL研究人员