近年来,大型语言模型(LLMs)展现出非凡的能力,不仅在自然语言处理任务中表现出色,还在临床医学、法律咨询和教育等多个领域取得了进展。LLMs 不仅仅是单纯的应用,而是演变为能够满足各种用户需求的助手。这模糊了人类与人工智能代理之间的界限,引发了人们对 LLM 内部可能表现出的人格、气质和情感的思考。
本文提出了一种名为 PsychoBench 的框架,用于评估 LLM 的各种心理方面。PsychoBench 包含临床心理学中常用的 13 个量表,并将这些量表进一步分为四个不同的类别:人格特质、人际关系、动机测试和情绪能力。我们的研究考察了五个流行的模型,即 text-davinci-003、ChatGPT、GPT-4、LLaMA-2-7b 和 LLaMA-2-13b。此外,我们还使用了一种“越狱”方法来绕过安全对齐协议,测试 LLM 的内在本质。我们已将 PsychoBench 公开发布在 https://github.com/CUHK-ARISE/PsychoBench。
为什么我们要关注 LLM 的心理测量?
对于计算机科学研究人员来说: 鉴于人工智能可能呈指数级发展,并可能对人类构成生存威胁(Bostrom, 2014),研究人员一直在研究 LLM 的心理,以确保它们与人类的期望保持一致。Almeida 等人