使用EBNeRD Benchmark进行推荐系统研究

在今天的数据驱动世界中,推荐系统已经成为不可或缺的一部分。无论是电子商务平台、视频流媒体服务,还是新闻网站,推荐系统都在帮助用户找到他们感兴趣的内容。为了推动推荐系统的研究和发展,Ekstra Bladet发布了EBNeRD Benchmark,这是一个专门为RecSys’24挑战赛创建的推荐系统仓库。本文将带您详细了解该仓库的内容和使用方法。

什么是EBNeRD Benchmark?

EBNeRD Benchmark是Ekstra Bladet推荐系统仓库的简称,主要用于基准测试EBNeRD数据集。它包含了多个新闻推荐算法的实现,并提供了详尽的示例和文档,帮助研究人员和开发者快速上手。

环境配置

为了便于开发和运行示例,我们推荐使用Conda进行环境管理,并使用VS Code作为开发工具。以下是安装所需环境和包的步骤:

  1. 创建和激活Conda环境
    首先,创建一个新的Conda环境并激活它。这里假设您已经安装了Conda。

    conda create -n my_env python
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值