在今天的数据驱动世界中,推荐系统已经成为不可或缺的一部分。无论是电子商务平台、视频流媒体服务,还是新闻网站,推荐系统都在帮助用户找到他们感兴趣的内容。为了推动推荐系统的研究和发展,Ekstra Bladet发布了EBNeRD Benchmark,这是一个专门为RecSys’24挑战赛创建的推荐系统仓库。本文将带您详细了解该仓库的内容和使用方法。
什么是EBNeRD Benchmark?
EBNeRD Benchmark是Ekstra Bladet推荐系统仓库的简称,主要用于基准测试EBNeRD数据集。它包含了多个新闻推荐算法的实现,并提供了详尽的示例和文档,帮助研究人员和开发者快速上手。
环境配置
为了便于开发和运行示例,我们推荐使用Conda进行环境管理,并使用VS Code作为开发工具。以下是安装所需环境和包的步骤:
-
创建和激活Conda环境:
首先,创建一个新的Conda环境并激活它。这里假设您已经安装了Conda。conda create -n my_env python