在之前的教程中,我们学习了如何创建和使用智能体、工具以及人机协作。但 MetaGPT 的真正强大之处在于它能够灵活地整合各种大型语言模型 (LLM),包括开源模型。
本教程将带你学习如何将开源 LLM 整合到 MetaGPT 中,并利用它们来生成项目输出。
注意:
由于开源模型本身的限制,本教程中描述的内容无法保证稳定的代码生成。如果你按照本教程进行实验,意味着你已经了解这一点。同时,我们也在探索如何在开源模型下获得更稳定、更高质量的输出。如果你也对此感兴趣,可以加入我们的 Discord 或微信社区群组。相信随着开源模型的更新,这一目标很快就能实现。
整合流程
我们将按照以下步骤介绍本教程:
- 模型部署: 使用 LLaMA-Factory、FastChat、ollama 等推理库部署相应的 LLM 模型。
- LLM 配置: 配置 MetaGPT 以使用部署的 LLM 模型。
- 可选:修复 LLM 输出: 修复开源 LLM 输出,以提高执行成功率。
- 运行: 运行 MetaGPT,并观察结果。