作为一名资深科技专栏作家,我最近关注到人工智能领域的一个有趣现象:越来越多的开发者开始质疑框架的必要性。Octomind 公司的深度学习工程师 Fabian Both 近期发表了一篇博文,分享了他们团队在构建 AI 代理时放弃 LangChain 框架的心路历程,这篇文章引发了我的思考。
LangChain 的诱惑与困境
Octomind 团队最初选择 LangChain 的原因很简单:它提供了一系列令人印象深刻的组件和工具,并且在当时非常流行。正如 LangChain 的承诺那样,它似乎可以让开发者“在一个下午的时间里,从一个想法变成可运行的代码”。然而,随着 Octomind 团队需求的不断提高,LangChain 的弊端也逐渐显现。
Both 指出,LangChain 最初在满足简单需求方面表现出色,但其高层抽象很快使得代码变得难以理解和维护。他以一个简单的翻译任务为例,展示了 LangChain 如何增加了代码的复杂性,却没有带来明显的好处。
以下是使用 OpenAI 包的 Python 代码示例:
from openai import OpenAI
cli