引言
随着互联网的快速发展,网络新闻成为了人们获取信息的主要渠道之一。面对海量的新闻信息,如何为用户推荐其感兴趣的内容成为了一个重要的研究课题。近年来,基于深度学习的推荐算法取得了显著的成果,本文将介绍一种基于神经网络的新闻推荐模型 NAML。
数据预处理
NAML 模型的输入数据包括用户点击数据和新闻元数据。首先需要对原始数据进行预处理,将其转换为模型可接受的格式。
用户数据预处理
用户数据预处理函数 preprocess_user_file()
主要完成以下任务:
- 构建用户ID词典: 将用户ID映射到唯一的数字索引。
- 划分训练集和测试集: 将用户数据划分为训练集和测试集,并根据用户历史点击新闻构建正样本和负样本。
- 生成用户点击新闻序列: 将用户历史点击的新闻ID按照时间顺序排列,形成用户点击新闻序列。
以下代码片段展示了如何从原始数据中提取用户ID和点击新闻信息:
for user in userdata:
line=user.strip().split('\\t')
userid=line[0]
if len(line)==4:
impre=[x.split('#TAB#') for x in line[2].split('#N#')]
if len(line)==3:
impre=[x.split('#TAB#') for x in line[2].split('#N#')]
trainpos=[x[0].split() for x in impre]
trainneg=[x[1].split() for x in impre]
新闻数据预处理
新闻数据预处理函数 preprocess_news_file()
主要完成以下任务:
- 构建新闻词典: 将新闻标题和正文中的单词转换为唯一的数字索引。
- 构建新闻类别和子类别词典: 将新闻类别和子类别映射到唯一的数字索引。
- 生成新闻特征向量: 将新闻标题和正文转换为词索引序列,并截断或填充至固定长度。
以下代码片段展示了如何从原始数据中提取新闻标题、正文、类别和子类别信息:
for newsline in newsdata:
line=newsline.strip().split('\\t')
news[line[1]]=[line[2],line[3],word_tokenize(line[6].lower()),word_tokenize(line[7].lower())]
if line[2] not in category:
category[line[2]]=len(category)
if line[3] not in subcategory:
subcategory[line[3]]=len(subcategory)
模型结构
NAML 模型主要由以下几个部分组成:
- 新闻编码器: 使用卷积神经网络 (CNN) 和注意力机制对新闻标题和正文进行编码,并结合新闻类别和子类别信息生成新闻特征向量。
- 用户编码器: 使用注意力机制对用户历史点击的新闻特征向量进行加权平均,生成用户特征向量。
- 预测层: 将用户特征向量和候选新闻特征向量进行点积运算,预测用户点击候选新闻的概率。
新闻编码器
新闻编码器使用 CNN 对新闻标题和正文进行编码,并使用注意力机制提取关键信息。具体来说,首先使用词嵌入矩阵将词索引序列转换为词向量序列。然后,使用 CNN 对词向量序列进行卷积操作,提取局部特征。接着,使用注意力机制对 CNN 输出进行加权平均,得到新闻标题和正文的特征向量。最后,将新闻标题和正文的特征向量与新闻类别和子类别的嵌入向量拼接起来,得到最终的新闻特征向量。
用户编码器
用户编码器使用注意力机制对用户历史点击的新闻特征向量进行加权平均,生成用户特征向量。
预测层
预测层将用户特征向量和候选新闻特征向量进行点积运算,得到用户点击候选新闻的预测分数。
模型训练与评估
NAML 模型使用点击率 (CTR) 预估任务进行训练,使用交叉熵损失函数作为优化目标。在评估模型性能时,使用了 AUC、MRR 和 NDCG 等指标。
总结
NAML 模型是一种基于神经网络的新闻推荐模型,它能够有效地学习新闻和用户的特征表示,并取得了良好的推荐效果。