引言
大语言模型(LLMs),例如 GPT-4,已经在各种应用中展现了无与伦比的能力,包括回答查询、代码生成等。同时,图结构数据作为一种内在的数据类型,在现实世界中无处不在。将LLMs的能力与图结构数据结合起来一直是热门话题。本文将这种整合分为两大类:一类是利用LLMs增强图学习,另一类是通过图结构提升LLMs的能力。通过这种相互协作,可以显著提升LLMs在复杂任务中的表现。
为什么要整合图与LLMs?
LLMs提升图学习
使用LLMs处理图任务有两个主要优势。首先,与通常不透明的图深度学习技术不同,LLMs主要通过推理来解决图相关的挑战,提供了更清晰的预测基础。这种透明性为理解复杂的图分析提供了一种更可解释的方法。其次,LLMs拥有一个广泛的先验知识库,涵盖了不同领域。传统的图学习模型由于训练数据的限制,难以全面吸收这些知识。因此,利用LLMs处理图数据可以充分利用其可扩展性和丰富的知识库,特别是在金融和生物等领域的图机器学习中。
图提升LLMs的能力
图结构还可以显著增强LLMs在逻辑推理和多智能体系统中的协作能力。例如,使用“让我们逐步思考”的简单提示,即所谓的链式思维方法,已被证明可以显著提高LLMs解决数学问题的能力。即便是这种最简单的图结构,也可以显著提升LLMs的性能,预示着利用更复杂的图结构可能带来更深远的改进。
LLMs增强图学习
增强图算法
将LLMs与图算法结合,主要是利用LLMs作为属性增强机制,提高图节点的内在属性。例如,使用LLMs处理节点的文本信息,以生成改进的属性,这些属性可以潜在地提升图学习模型的性能,如图神经网络(GNNs)。
一种直接的方法是将LLMs作为编码器来处理基于节点的文本属性,并可以在特定的下游任务上进行微调。另一种技术是使用专有的LLM,例如GPT-3.5,同时为任务生成预测和解释。通过将LLMs的输出与原始属性编码结合起来,可以生成节点嵌入,并将这些嵌入整合到GNNs中以提升性能。
预测图任务
LLMs在预测图属性方面表现出色,包括节点度和连通性等属性,甚至可以应对复杂的挑战,如节点和图分类。例如,通过零样本或少样本提示,LLMs可以直接预测结果或先提供分析推理再给出最终预测。
一种更先进的方法是使用多任务、多提示指令调优过程来细化LLMs,例如InstructGLM。通过这种方法,他们的系统在三个引用网络上的表现超越了图神经网络基准。
构建图
LLMs还可以帮助构建用于下游任务的图。例如,有研究者尝试使用LLMs分析新闻标题,识别可能受影响的公司。通过LLMs自动构建的公司网络可以用于提升股市走势预测的性能。
图提升LLMs的能力
提升推理能力
图是人类推理的基础结构。通过心智图和流程图等工具,以及试错和任务分解等策略,我们体现了内在的图结构思维过程。当合理利用时,它们可以显著提升LLMs的推理能力。例如,链式思维提示方法(COT)利用一种有向无环图来进行结构化问题求解,即便是这种基本框架,也能显著提升LLMs在数学问题基准上的效率。
相比之下,树状思维方法(ToT)利用树这种基础的无向无环图进一步深入推理。每个推理阶段都是一个节点,LLMs遍历这棵树,必要时消除不符合的节点并返回,以推导解决方案。这种方法显著提升了LLMs在“24点游戏”测试中的表现,超越了链式思维方法。
构建LLMs协作
在复杂任务如软件开发中,需要多个LLMs在协作框架内协同工作,即多智能体系统。图结构在这种情况下非常有用,可以有效建模协作LLMs之间的关系和信息流。
开放问题与未来方向
尽管大语言模型与图结构的结合已经展现出巨大的潜力,但仍存在许多未解的问题和研究方向,值得进一步探索。
开放问题与未来方向
-
多模态图与LLMs的整合:目前的研究大多集中在单一类型的图上,而现实世界的数据往往是多模态的,包含文本、图像、视频等不同类型的数据。如何将这些多模态数据与图结构和LLMs有效整合,是一个重要的研究方向。
-
高效的图表示学习:尽管LLMs在处理文本数据方面表现出色,但如何高效地将图结构数据嵌入到LLMs中,仍然是一个挑战。特别是在大规模图数据的情况下,如何保证计算的高效性和模型的可扩展性,是一个亟待解决的问题。
-
解释性与透明性:虽然LLMs通过推理提供了一定的透明性,但在处理复杂图任务时,如何进一步提升模型的可解释性,帮助用户理解模型的决策过程,是一个重要的研究方向。
-
实时更新与动态图:现实世界的图数据往往是动态变化的,例如社交网络中的关系变化、金融市场的动态波动等。如何让LLMs处理和适应这些动态变化,提供实时的预测和分析,是一个具有挑战性但非常重要的研究方向。
-
跨领域应用:尽管在金融、社交网络等领域,LLMs与图的结合已经展现出巨大潜力,但在其他领域如医疗、地理信息系统等的应用仍然相对较少。如何将这些方法推广到更广泛的应用领域,是未来的重要研究方向。
结论
整合大语言模型和图结构数据,不仅可以提升图学习的效果,还可以显著增强LLMs的推理和协作能力。这种互利的结合,为解决复杂的现实问题提供了新的思路和方法。尽管面临许多挑战,但随着研究的深入,我们有理由相信,这一领域将会有更为广阔的发展前景。
参考文献
- Pan, S., Zheng, Y., & Liu, Y. (2023). Integrating Graphs with Large Language Models: Methods and Prospects. arXiv preprint arXiv:2310.05499.
- Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., … & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., … & Le, Q. V. (2022). Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903.
- Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., … & Rush, A. M. (2020). HuggingFace’s Transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.
- Yao, S., Wu, J., Wang, X., Shen, Y., Zhao, Y., Yu, J., … & Zhou, B. (2022). ReAct: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629.
- Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). LINE: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web (pp. 1067-1077).
- Hamilton, W. L., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 1024-1034).
- Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.