仓库布局设计对于提高效率和生产力至关重要。本文介绍了一种基于人工智能的自动化仓库布局生成框架,该框架采用约束束搜索方法,在给定空间参数范围内生成最优布局,同时满足所有功能要求。这种方法能够为各种仓库尺寸、形状、门位置和互连设计生成可行的最优布局,目前正在准备部署,将使人类设计师能够快速探索和确认选项,从而选择最适合其用例的布局。
1. 引言
仓库管理系统(WMS)的主要目标是尽可能高效地运营,通过提高生产力、降低人工成本来提高盈利能力,并最终提高客户满意度。WMS的一个关键组成部分是最优空间利用。它通过最大化库存存储和最小化浪费或未充分利用的区域,减少了对更大容量仓库的需求。此外,仓库配置对所有仓库操作都有直接影响,特别是工人路径和拣选过程。高效的仓库配置(即布局)可以通过消除不必要的移动和相关错误来增强订单履行流程,从而节省时间和成本。
然而,全球绝大多数仓库仍然继续依赖人工管理或基本自动化。多年来,已经提出了一系列传统和非传统的手动布局设计,以加快仓库操作并最小化运营成本。尽管手动设计的布局对于选择有限的小型仓库可能是可行的,但对于大规模仓库来说,这种方法效率较低,更容易出现人为错误。因此,自动生成候选布局的过程将使所有利益相关者受益。此外,自动化仓库布局流程将允许用户随时间改变规格以满足不断变化的产品需求,并在保持效率和生产力的同时促进仓库的扩展或重组。
为了自动生成最优候选布局,我们必须首先建立明确的标准来定义什么构成最优布局;在本文中,我们将布局定义为最优,如果它在给定所需的可访问存储点(即拣选面)数量、所需的长期存储点(产生可访问性惩罚的位置)数量以及空间的物理和功能约束的情况下最大化了空间使用率(即存储容量)。我们的目标是设计能够考虑用户在最大化存储和可访问性这些相互竞争的优先事项之间的不同偏好的布局。因此,考虑到问题的多目标性质,通常存在不止一个最优布局。因此,我们必须解决一个约束优化问题,在满足一组约束条件的同时最大化存储容量和拣选面数量。值得一提的是,这个问题与一般的平面规划不同,后者是一个分区问题,给定房间列表及其邻接关系、大小和位置约束。因此,这些方法并不完全适用于我们的问题。
与自动平面图生成不同,自动仓库布局生成在文献中还没有被充分探索。在仓库环境中,存在一些额外的挑战,这些挑战并未包含在那些分析中,例如工业约束、不断变化的偏好以及对仓库运营活动的实际影响。之前尝试自动化仓库布局设计的努力主要集中在使用数学优化方法上。例如,Zhang和Lai将问题表述为整数线性规划(ILP),结合路径重连和遗传算法(GA)。Gu使用广义Benders分解(GBD)来找到最优解。数学方法有一些局限性,例如建模复杂性、在需求发生任何变化时缺乏灵活性以及大量的计算成本。
我们提出了一个新的框架来解决现有文献中的差距,并构建一个适用于现实世界场景的工具。我们提出了一个交互式和迭代的工具,允许仓库设计师施加操作约束或偏好,并使用诸如容量和可访问性等客观度量来评估最优性。这引导用户根据现有需求做出关于最终配置的明智决定,并解决了一个约束优化问题,在满足给定仓库约束的同时最大化存储容量和拣选面数量。
2. 方法论
我们的目标是创建能够平衡各种因素(如存储容量、足够的访问点数量、导航便利性和物品检索过程中的平均预计吞吐量)的仓库布局。在生成一系列候选布局后,经验丰富的仓库设计师可以从候选布局中进行选择或进一步完善。对于在这个交互式选择过程中选择的任何候选布局,该布局随后将由现场团队进行彻底验证,然后再实施。
2.1 树搜索
我们提出了一种新颖的候选布局生成算法(见算法1),以基于树搜索生成最优布局。给定空间由离散的二维网格单元指定,其中包含几个标记墙壁位置Mwalls和门连接Mdoor_connections的掩码。图1显示了我们行业合作伙伴的一个样本空间的运行示例。网格中的每个单元格根据其所属类别着色:墙壁、门连接、通道、存储或拣选面。网格初始化时所有单元格都被完全占用Lfull。然后,树搜索通过系统地雕刻新通道来探索可能布局的空间。在布局过滤步骤中过滤掉无效节点(即违反任何约束的布局)(在2.2节中解释)。使用自定义评分函数对有效布局进行评分,得分最高的布局被指定为最优布局。如前所述,通常有多个最优(和可行)布局供客户考虑。在图1中,每条彩色路径代表在特定设置下通向最佳可能解决方案的路线。
由于大规模穷举树搜索的耗时性和内存限制,我们采用束搜索来探索树。束搜索是一种启发式广度优先搜索(BFS)算法,有助于做出局部决策并限制搜索空间。在默认设置(束大小:b = 1)中,对于树中的每个节点:(i)通过在每个块存储中雕刻新的可能水平或垂直通道来生成所有子节点;(ii)第一层的子节点总是被扩展(以促进解决方案的多样性)。对于更深的层,只扩展有效的子节点;(iii)对所有有效子节点进行评分,选择最有希望的子节点(得分最高的)进行进一步扩展。剩余的子节点被剪枝。这个过程一直持续到树中没有更多子节点可以扩展。这表示已达到终止状态,得分最高的布局被认为是最优的。然而,对于较大的束大小(b > 1),在每一层选择b个得分最高的子节点。
2.2 布局过滤
为确保只选择可行且高效的布局,我们筛选所有生成的子布局,拒绝那些违反任何功能或效率约束的布局,如下所定义:
功能约束:
- 与拣选面相连的通道不能小于指定的通道宽度,
- 所有通道都需要可以从仓库空间的所有门进入,
- 不允许将物品放置在门口或标记为"保留"的区域,
- 柱子不能阻挡通道。
效率约束:
- 不允许宽于所需最小尺寸的通道,因为它们会浪费空间,
- 双面访问块存储应至少包含两行,
- 每个块存储应包含多个物品,因为在给定位置存储单个物品既不高效也不可取。
2.3 布局评分
对候选解决方案进行评估,并剪枝表现不佳的树节点。评分函数是树搜索中使用的关键启发式组件。错误指定的评分会对树搜索的节点扩展产生不利影响,导致次优解。我们引入了一个评分函数,公式(1),它不仅能够在重要的性能因素(例如存储和可访问性)之间进行权衡,而且还促进了多样化布局生成。我们在评分公式中使用归一化并仔细定义术语权重,以确保布局评估准确和公正。
Score = αTs + βTpf + c1To, (1)
评分函数是三个项的加权组合,即归一化存储容量Ts、归一化拣选面数量Tpf和特定方向(垂直或水平)的归一化块存储数量To。系数α和β指定前两项的相对重要性,而系数c1是经验选择的固定超参数(稍后将详细介绍)。
归一化存储容量Ts定义为,
Ts = (Ns - c2θPa) / 总开放面积, (2)
其中Ns是存储容量;θ是加权系数;c1和c2是超参数(稍后将详细讨论),Pa是可访问性惩罚,定义为,
Pa := ΣBSi ωi maxj∈BSi (hj - 1)2, (3)
其中ω和h对应于块存储BS的宽度和物品高度。惩罚与需要移除以访问块存储中最深行的物品数量有关。所选择的二次缩放具有理想的对称性,确保适当惩罚较高的深度。
公式(1)中的第二项Tpf,归一化拣选面数量定义为,
Tpf = Npf / Ns, (4)
其中Npf是拣选面的数量。
最后,公式(1)中的第三项To表示特定方向(垂直或水平)的归一化块存储数量,如果该方向与空间方向相反。如果不使用这一项,块存储往往会与空间方向对齐。然而,有时由于暂存区的位置,相反的方向更可取。To提供了一个控制,允许主导布局方向,从而促进结果的多样性。
加权系数α、β和θ调整不同项之间的平衡。项α∈{0.1,…,1}控制存储容量和拣选面数量之间的平衡,β = min(0.1, 1 - α),θ∈{0.1,…,α/2}根据α定义。项θ控制可访问性惩罚Pa。θ的最大值基于α设置,以避免过度惩罚。超参数c1 = 0.01和c2 = 0.1经验性地设置,以缩放相应的项。
每个α和θ的组合代表树搜索发现的生成最优布局的特定偏好属性。选择最终布局的过程涉及仓库设计师,将在第3节中详细讨论。
2.4 连通性评分
除了上面介绍的评分函数外,我们还定义了另一个评分项,连通性,以估计不同候选布局的可能相对吞吐量。请注意,确切的吞吐量无法事先知道,因为它将取决于特定的产品分配和订单列表。我们在这里的估计仅用于确定不同候选方案的排名顺序,作为在上面生成的几个最优候选方案中进行选择的工具。连通性评分定义为拣选面对之间最短距离与曼哈顿距离比率的平均累积值:
C = (1/Npf) Σi≤j 1 / (DShortest i,j / DManhattan i,j), (5)
其中Npf是拣选面的数量,Di,j是两个拣选面位置之间的距离(即最短或曼哈顿)。
这基于这样的直觉:对于高吞吐量(即更连通)的布局,最短距离(拣选面对之间)平均而言将更接近曼哈顿距离的值。这个函数还具有额外的理想属性,即它被归一化为1,便于不同布局之间的简单直接比较。请注意,我们决定不将连通性作为公式(1)中的独立评分项,以简化过程并最小化搜索中的不稳定性。
2.5 后期优化
后期优化步骤的目标是应用任何额外的约束条件来得到最终布局。虽然每个应用都需要现场团队进行一些定制,但通常这些约束和要求可以编码以节省时间。在一个应用中,托盘货架系统只允许整个块存储中有偶数个货架单元(由于货架基础设施的构造方式)。在另一个应用中,需要清晰的通道来访问包含消防安全设备的柱子。在这两种情况下,我们算法的灵活性允许这些约束作为最后一步以编程方式应用,只传递满足标准的布局。
2.6 实现细节
我们的方法可以调整为更的细粒度搜索。从默认搜索(束大小b = 1)开始,我们可以增加束大小以探索更多的候选布局。增加束大小可以提高搜索的多样性,但会增加计算成本。我们还实现了一个多线程版本,可以并行探索多个搜索路径,进一步提高效率。
我们的方法使用Python实现,利用NumPy进行高效的数组操作。为了优化性能,我们采用了Numba JIT编译器来加速计算密集型函数。这种实现能够在几分钟内为中等规模的仓库(例如,50x100米)生成高质量的布局。
3. 结果与讨论
我们的方法能够为各种仓库尺寸、形状和门位置生成可行的最优布局。图2展示了一些生成布局的示例,展示了我们方法的灵活性和适应性。
图2:样本生成布局。(a)矩形仓库,(b)L形仓库,©具有多个门的仓库,(d)具有内部障碍物的仓库。
3.1 布局多样性
通过调整评分函数中的权重(α、β和θ),我们可以生成具有不同特性的布局。例如,增加α会产生更注重存储容量的布局,而增加β会产生具有更多拣选面的布局。图3展示了通过调整这些参数获得的不同布局。![Figure 3: Layout diversity][]
图3:通过调整评分函数参数获得的布局多样性。(a)高存储容量,(b)高拣选面数量,©平衡的布局。
这种灵活性允许仓库设计师探索各种选项,并根据特定需求选择最合适的布局。例如,处理大量SKU的仓库可能更倾向于具有更多拣选面的布局,而需要存储大量相同物品的仓库可能更喜欢高容量布局。
3.2 可扩展性
我们的方法可以扩展到各种仓库规模。对于小型仓库(例如,20x30米),算法可以在几秒钟内生成布局。对于大型仓库(例如,100x200米),生成时间可能增加到几分钟。然而,即使对于非常大的仓库,生成时间通常也不会超过10-15分钟,这对于布局规划阶段来说是完全可以接受的。
3.3 实际应用
我们的方法目前正在准备部署到实际仓库环境中。在初步测试中,该方法生成的布局与经验丰富的人类设计师手动创建的布局相当,有时甚至更优。主要优势在于生成速度和探索多个备选方案的能力。
在实际应用中,该工具的工作流程如下:
- 输入仓库尺寸、门位置和任何内部障碍物。
- 指定所需的通道宽度、最小和最大块存储尺寸等约束条件。
- 运行算法生成多个候选布局。
- 仓库设计师审查生成的布局,可能调整参数以探索更多选项。
- 选择最终布局,可能进行小的手动调整。
- 将选定的布局发送给现场团队进行最终验证和实施。
这个过程大大减少了布局设计所需的时间,同时确保了高质量的结果。它还允许快速迭代和探索各种"假设"情景,这在手动设计过程中是不可行的。
3.4 局限性和未来工作虽然我们的方法在生成高质量的仓库布局方面表现出色,但它也有一些局限性:
-
目前,该方法主要关注2D布局。未来的工作可以扩展到3D布局,考虑垂直存储选项。
-
该算法不考虑特定的产品分类或订单模式。将这些因素纳入评分函数可能会产生更优化的布局。
-
当前的实现不考虑动态因素,如季节性需求变化。未来的版本可能包括这些考虑因素,以创建更灵活的布局。
-
虽然该方法可以处理各种形状的仓库,但对于非常不规则的形状,可能需要额外的调整。
未来的工作方向包括:
-
整合机器学习技术,根据历史数据和特定仓库的性能指标优化布局。
-
开发一个更全面的仿真环境,以更准确地评估候选布局的性能。
-
扩展该方法以包括更多的仓库元素,如分拣区、包装站和自动化系统。
-
探索将该方法与其他优化技术(如遗传算法或强化学习)相结合的可能性。
4. 结论
本文提出了一种新颖的自动化仓库布局生成框架。该方法使用约束束搜索来生成最优布局,同时考虑各种物理和功能约束。通过使用自定义评分函数,该方法能够在存储容量、可访问性和操作效率之间取得平衡。
我们的方法展示了在各种仓库尺寸、形状和配置下生成可行和最优布局的能力。它提供了一个灵活的工具,使仓库设计师能够快速探索多个选项并做出明智的决策。
随着该方法准备部署到实际环境中,它有望显著简化仓库布局设计过程,节省时间和资源,同时产生高效的布局。虽然还有改进的空间,但这项工作为仓库设计领域的进一步自动化和优化铺平了道路。
未来的研究将致力于解决当前的局限性,并将该方法扩展到更广泛的仓库管理应用中。随着技术的不断发展,我们预计这种自动化方法将在提高仓库效率和适应不断变化的物流需求方面发挥越来越重要的作用。
参考文献:[1] Mohamud, A., et al. (2023). “Warehouse layout optimization: A comprehensive review.” International Journal of Production Research.[2] Richards, G. (2017). “Warehouse Management: A Complete Guide to Improving Efficiency and Minimizing Costs in the Modern Warehouse.” Kogan Page Publishers.[3] Albert, S., et al. (2023). “State of warehouse automation: Trends and future directions.” Robotics and Computer-Integrated Manufacturing.[4] Gue, K. R., & Meller, R. D. (2009). “Aisle configurations for unit-load warehouses.” IIE Transactions.[5] Bortolini, M., et al. (2020). “Warehouse layout design: A systematic literature review.” International Journal of Logistics Management.