大型语言模型中的偏见与公平:可操作评估框架

近年来,随着大型语言模型(LLMs)的广泛应用,人们逐渐意识到这些模型可能会在多个方面表现出偏见。这种偏见可能会对某些群体(如性别、种族、性取向或年龄)造成不公平的结果。为了解决这一问题,Dylan Bouchard 及其团队提出了一种技术指南,帮助从业者评估LLM在具体使用场景中的偏见和公平性风险。

文章摘要

大型语言模型(LLMs)在处理各种任务时非常灵活,但在模型层面评估其偏见和公平性却充满挑战。现有的方法主要依赖于基准数据集,假设这些数据集能够充分捕捉特定的偏见和公平性风险。然而,这些评估方法可能会高估低风险提示(prompts)使用场景的风险。此外,目前的文献中尚未提供有效的框架将LLM使用场景与适当的评估指标对齐。

Dylan Bouchard的研究主要贡献在于提出了一种决策框架,使从业者能够根据特定的LLM使用场景确定应使用的评估指标。该框架将LLM偏见和公平性风险分类,并将这些风险映射到LLM使用场景的分类法中,最后正式定义了评估每种风险的各种指标。该框架还引入了几个新的偏见和公平性指标,包括创新的反事实指标以及基于刻板印象分类器的指标。

值得注意的是,该框架不仅关注模型本身,还考虑了提示风险和模型风险的敏感性,通过在LLM使用场景层面定义评估,使得评估更具实用性和可操作性。由于所有评估指标都是仅使用LLM输出计算的,从业者可以很容易地应用这一框架。

研究背景与动机

当前的LLM在处理多种任务时表现出色,但在评估偏见和公平性方面仍存在重大挑战。现有的方法主要依赖于预定义的提示数据集、掩码标记或未掩码句子,假设这些数据集能够充分捕捉特定的偏见或公平性风险。然而,这些方法在低风险提示的使用场景中可能会高估风险。此外,当前文献中缺乏一个有效的框架将LLM使用场景与适当的评估指标对齐。

为了解决这些限制,本文开发了一种可操作的LLM偏见和公平性评估框架,该框架在使用场景层面定义。研究借鉴了Saleiro等人提出的分类公平性框架,使从业者能够通过考虑使用场景的相关特征和利益相关者的价值观,将LLM使用场景映射到适当的评估指标集。

主要贡献

  1. 偏见和公平性定义的形式化:本文首先从文献中提取并形式化了LLM的偏见和公平性定义,并按风险类别对这些定义进行分类。
  2. 使用场景分类法:将偏见和公平性风险映射到一个集中于大规模应用的使用场景分类法中,这些应用中可能不适合人类参与。
  3. 评估指标的详细说明:针对每个风险类别,详细讨论了各种偏见和公平性评估指标,包括其输入要求、计算方法、评估的风险以及适用的情况。

实际应用

为了实用性,本文选择的LLM偏见和公平性指标仅使用LLM生成的输出作为输入。这包括生成文本指标、推荐公平性指标和分类公平性指标,避免了需要嵌入或概率的复杂计算。

结论

本文提出的框架为LLM使用场景提供了一个可操作的评估工具,使从业者能够更有效地评估和管理LLM中的偏见和公平性风险。通过结合实际使用场景的提示,该框架能够为特定应用定制风险评估,提升了评估的实用性和准确性。


这篇文章不仅为从业者提供了一个技术指南,还为研究人员提供了一个新的视角和方法来研究LLM中的偏见和公平性问题。希望这项研究能够推动LLM的公平使用,为社会各界带来更大的价值和公平。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值