大语言模型应用场景中的偏见和公平性评估可操作框架

大语言模型(LLMs)在各种应用场景中展现出了强大的能力,但同时也可能存在各种偏见,对某些受保护属性群体(如性别、种族、性取向或年龄等)造成不公平的结果。本文旨在为从业者提供一个技术指南,用于评估LLM应用场景中的偏见和公平性风险。

1. 引言

大语言模型在处理各种任务时表现出的多功能性,给模型层面的偏见和公平性评估带来了挑战。现有的方法主要集中在使用预定义提示的基准数据集来评估风险,但这可能会高估低风险提示人群的应用场景风险。此外,目前的文献尚未提供一个有效将LLM应用场景与合适的偏见和公平性评估指标对齐的框架。

本文旨在通过开发一个可操作的LLM偏见和公平性评估框架来解决这些限制。该框架在应用场景层面定义,允许从业者通过考虑应用场景的相关特征和利益相关者的价值观,将LLM应用场景映射到适当的偏见和公平性评估指标集。这种评估方法的独特之处在于它结合了从业者实际应用场景中的提示,考虑了已被证明显著增加偏见和不公平结果可能性的特定提示风险。

为了介绍该框架,本研究首先从文献中提供LLMs偏见和公平性理想的正式定义,并按风险类别对这些定义进行分类。随后,将这些风险映射到一个聚焦于大规模应用的用例分类法中。最后,针对每个风险类别,详细说明了各种偏见和公平性评估指标,讨论了它们的输入要求、计算方法、评估的风险以及应该应用的情况。作为本工作的一部分,引入了多种新颖的偏见和公平性指标。

2. LLM应用场景的偏见和公平性风险

本节提供了一些先决术语和概念的正式定义,并提出了一个按风险类别组织的定义分类法。具体包括毒性、刻板印象、反事实公平性和分配危害等风险类别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值