如何性格特质影响谈判结果?基于大语言模型的模拟研究

心理学研究表明,性格特质在决策过程中起着重要作用。例如,亲和性通常与谈判中的积极结果相关,而神经质则往往与不利结果相关。本文引入了一个以大语言模型(LLM)为基础的模拟框架,该框架中的代理具备合成的性格特质。这些代理在谈判领域进行协商,并拥有可定制的性格和目标。实验结果显示,基于LLM的模拟能够再现人类谈判中的行为模式。

本文的贡献有两个方面。首先,我们提出了一种模拟方法,研究LLM代理的语言和经济能力之间的对齐。其次,我们提供了关于大五性格特质对双边谈判结果的战略影响的实证见解,并通过合成的谈判对话案例研究揭示了欺骗和妥协等有趣的行为。

背景

大语言模型(LLM)已经展示了模拟多种人类特质的能力(Park et al., 2022; Serapio-García et al., 2023)。这些模型能够模拟复杂的行为,并为人类认知的各个方面提供有价值的见解。决策是一个长期以来吸引心理学家和经济学家注意的认知过程。经济理论认为,决策假定一定程度的理性和对可用选项的理解(Gibbons, 1992)。然而,行为主义者认为,人类并非完全理性,而是受心理因素(Evans, 2014)、认知偏见(Daniel, 2017)和性格特质(Bayram and Aydemir, 2017)的影响。

在本文中,我们旨在调查LLM在不同性格特质个体的决策模拟中能够达到的程度,特别是谈判情景。证据表明,在谈判环境中,某些性格特质可能带来优势(Falcão et al., 2018; Barry and Friedman, 1998; Amanatullah et al., 2008)。例如,亲和性在竞争性谈判中往往处于劣势,而在合作性谈判中具有优势(Falcão et al., 2018)。在LLM的背景下,我们尝试回答心理学中的一个长期问题:“性格特质的变化如何影响谈判结果?”

研究方法

本节介绍了我们的模拟框架,该框架中包含具备合成性格特质的LLM代理。在第3.1节中,我们构建了谈判模型和使用的语法。在第3.2节中,我们介绍了配置LLM谈判代理的方法,通过提供设置性格特质和谈判目标的指令。然后在第3.3节,我们描述了使用LLM代理模拟谈判对话的过程。

谈判模型

我们考虑一个经典的讨价还价场景,其中买方和卖方就物品价格进行谈判。通常,买方希望降低购买价格,而卖方则希望最大化价格,这导致了谈判场景的竞争性质。这也是一个零和博弈的例子,其中一方的收益导致另一方的损失,显示了任务的竞争性质(Gibbons, 1992)。在我们的LLM基础谈判模拟中,卖方和买方都是LLM代理。由于我们的目标是研究性格特质对谈判的影响,我们将卖方和买方代理定义为心理和经济属性(公式1)。

Seller  s = ( ψ s , u s ) \text{Seller } s = (\psi_s, u_s) Seller s=(ψs,us)
Buyer  b = ( ψ b , u b ) \text{Buyer } b = (\psi_b, u_b) Buyer b=(ψb,ub)

心理属性 ψ s \psi_s ψs ψ b \psi_b ψb 将按照大五性格模型进行实例化。大五模型将人类性格分为五个维度:开放性(OPE)、尽责性(CON)、外向性(EXT)、亲和性(AGR)和神经质(NEU)(Costa Jr 和 McCrae, 1995; John et al., 1999)。每个维度都是一个具有正负极性的谱。五个维度涵盖了人类性格模式的全面范围。代理的经济属性反映在他们的效用函数中,分别用 u s u_s us 表示卖方和 u b u_b ub 表示买方。效用函数是一种数学方式,用于描述代理的偏好或目标,具体取决于他们是最小化(买方)还是最大化(卖方)价格(Gibbons, 1992)。

卖方和买方围绕某个产品进行对话 D D D。对话是一个包含 T T T 个发言的序列 D = { d 1 , d 2 , … , d T } D = \{d_1, d_2, \ldots, d_T\} D={d1,d2,,dT}。每个发言 d t d_t dt 都与一个谈判状态 s t s_t st 和当前报价 p t p_t pt 相关。

LLM代理配置

通过引入性格指令(第3.2.1节)和谈判目标指令(第3.2.2节)并使用上下文学习,我们配置了具备特定性格特质的LLM代理。

性格特质指令

我们的目的是赋予代理一个合成的性格属性。即,一个代理 k k k,其中 k ∈ { s , b } k \in \{s, b\} k{s,b},具有一个五维的性格属性 ψ k \psi_k ψk 如公式2所定义:

ψ k = ( ψ O P E k , ψ C O N k , ψ E X T k , ψ A G R k , ψ N E U k ) \psi_k = (\psi_{OPE_k}, \psi_{CON_k}, \psi_{EXT_k}, \psi_{AGR_k}, \psi_{NEU_k}) ψk=(ψOPEk,ψCONk,ψEXTk,ψAGRk,ψNEUk)
ψ k ∈ L 5 \psi_k \in L^5 ψkL5
L = { − , + } ⊗ { L o w , M o d e r a t e , H i g h } L = \{-, +\} \otimes \{Low, Moderate, High\} L={,+}{Low,Moderate,High}

ψ k \psi_k ψk 的每个分量代表每个性格维度的极性(负或正)和程度(低、中或高)(Tian et al., 2018)。例如, ψ A G R k \psi_{AGR_k} ψAGRk L L L 中的一个值,分别代表高度不亲和(—)、中度不亲和(–)、低度不亲和(-)、低度亲和(+)、中度亲和(++)和高度亲和(+++)。例如,可以通过从性格空间 L 5 L^5 L5 随机抽取一个向量来定义一个性格属性 ψ k \psi_k ψk,等于(OPE+, CON—, EXT-, AGR+, NEU++)。

根据前人的工作,我们使用描述性格的形容词来设置性格特质(Serapio-García et al., 2023)。我们使用Goldberg(1992)提出的70对双极形容词,这些形容词在统计上与某些大五性格特质相关(表1)。例如,用不确定和不负责任等形容词来提示LLM,很可能会导致具有负面尽责性特质的发言。对于 ψ k \psi_k ψk 中的每个性格维度,我们从与给定维度极性相关的所有描述性格的形容词中随机选择 n n n 个形容词。此外,我们根据性格特质的程度应用修饰词。我们使用“非常”作为高程度的修饰词,使用“有点”作为低程度的修饰词。中程度不使用修饰词。通过这个过程,我们使用与任何给定性格属性 ψ k \psi_k ψk 相关的5×n个形容词。然后我们用模板生成一个性格特质指令“你具有以下性格:${L}。在谈判过程中反映你的性格。”,其中 L L L 是一个逗号分隔的相关形容词列表(包括修饰词)。性格特质指令通过上下文学习提供给LLM代理。

表1:大五性格维度及其对应的描述性格的形容词对

维度负面正面
OPE没有想象力的, 缺乏创造力的, 不美学的, …有想象力的, 创造力的, 美学的, …
CON不确定的, 杂乱无章的, 不负责任的, …自我效能的, 有条理的, 负责任的, …
EXT不友好的, 内向的, 沉默的, …友好的, 外向的, 健谈的, …
AGR不信任的, 不道德的, 吝啬的, …信任的, 道德的, 慷慨的, …
NEU放松的, 悠闲的, 随和的, …紧张的, 神经质的, 焦虑的, …
谈判目标指令

为了配置LLM谈判代理的经济属性 u s u_s us u b u_b ub(公式1),我们引入定义每个代理谈判目标的指令。具体来说,我们关注一个讨价还价的场景,其中卖方代理希望以较高的价格出售产品,尽可能接近其理想价格(Raiffa, 1982)。相反,买方代理希望以较低的价格达成交易,并努力实现其理想目标价格。指令如下:

  • (买方)作为买方,通过对话尝试以较低的价格为 ${P} 达成交易。你希望支付的价格是 p b p_b pb

实验结果

通过改变代理的性格特质,我们观察到谈判结果和行为模式的变化。我们调查了哪些性格特质导致更好/更差的结果。更重要的是,我们希望看到基于LLM的模拟结果是否与先前在人类受试者上进行的研究结果一致。我们的实验结果显示,基于LLM的模拟中的倾向性通常与人类实验中观察到的结果一致。此外,基于合成的谈判对话的案例研究揭示了有趣的行为模式,如欺骗行为、情感诉求和“要么接受,要么放弃”的策略。这些结果表明,LLM不仅可以模拟谈话风格,还能够捕捉人类的决策模式。

结论

本文提出了一个利用具备语言和经济能力的LLM代理的模拟框架,并提供了大五性格特质对模拟谈判结果影响的见解。通过与心理学实验结果的比较,我们验证了我们的模拟结果的有效性。未来的研究可以进一步扩展此框架,探索更多复杂的谈判场景和多方谈判。

参考文献

  1. Park, J., et al. (2022). “Large Language Models and Human Traits.”
  2. Serapio-García, M., et al. (2023). “Emulating Human Behaviors with LLMs.”
  3. Gibbons, R. (1992). “Game Theory for Applied Economists.”
  4. Evans, J. (2014). “Reasoning and Rationality in Decision-Making.”
  5. Daniel, K. (2017). “Cognitive Biases in Human Decisions.”
  6. Bayram, N., & Aydemir, M. (2017). “Personality Traits and Decision-Making.”
  7. Falcão, H., et al. (2018). “Personality Traits in Negotiations.”
  8. Barry, B., & Friedman, R. (1998). “The Impact of Personality on Negotiation.”
  9. Amanatullah, E., et al. (2008). “Negotiation Strategies and Personality.”
  10. Costa Jr, P.T., & McCrae, R.R. (1995). “A Five-Factor Theory of Personality.”
  11. John, O.P., et al. (1999). “The Big Five Inventory.”
  12. Raiffa, H. (1982). “The Art and Science of Negotiation.”
  13. Jennings, N., et al. (2001). “Automated Negotiation: Prospects, Methods and Challenges.”
  14. Tian, Y., et al. (2018). “Personality Descriptions in LLMs.”
  15. Goldberg, L.R. (1992). “The Development of Markers for the Big-Five Factor Structure.”
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值