在人工智能领域,一个引人深思的悖论正在引起研究者们的广泛关注。这个被称为"一致性推理悖论"(Consistent Reasoning Paradox, CRP)的理论,揭示了人工智能在追求人类级智能的过程中所面临的根本性挑战。这一理论不仅对我们理解人工智能的本质至关重要,还为构建可信赖的AI系统指明了方向。让我们深入探讨这个悖论的内涵及其对AI发展的深远影响。
人工智能的一致性推理:模仿人类智能的关键
一致性推理是人类智能的核心特征之一。它指的是人类能够处理等价但表述不同的任务,例如"告诉我现在几点!“和"现在几点钟?”。这种能力对于日常生活和科学研究都至关重要。如果人类无法在基本算术问题上进行一致性推理,我们甚至难以设置基本的考试题目。
因此,要通过图灵测试并被认为是真正的人工通用智能(AGI),AI系统必须具备一致性推理能力。正如图灵在其1950年的开创性论文中所指出的,AI想要通过图灵测试,最佳策略就是尽可能模仿人类的行为。这意味着:
AGI ⇒ 通过图灵测试 ⇒ 一致性推理
然而,正是这种看似合理的追求,却导致了一个令人意外的悖论。
一致性推理悖论:与人类智能相伴而来的人类般易错性
一致性推理悖论(CRP)的核心论点可以概括为以下几个方面:
- 存在专门的AI可以解决特定问题
CRP I指出,对于某些特定的问题集(如基本算术问题),存在一个名为SpecialBot的专门AI系统。当每个问题用一个特定句子描述时,SpecialBot总能给出正确答案,从不出错。然而,这个AI并不具备一致性推理能力,因此无法通过图灵测试,也就不能被视为真正的AGI。