用“记忆碎片”优化大型语言模型:POEM 如何提升 AI 表达能力?

引言:大型语言模型与语境学习的瓶颈

近年来,大型语言模型(LLM)的迅猛发展,例如 GPT、BERT 等,为自然语言处理(NLP)领域带来了革命性的变化。这些模型展现出惊人的文本生成和理解能力,尤其是在“语境学习”(ICL)的加持下,只需少量示例便能出色完成各类任务。

然而,语境学习的效果很大程度上取决于示例的选择和排序。不合理的示例排列可能导致模型产生偏差,影响最终结果。尽管研究者们已经探索了诸如最近邻检索等方法来选择合适的示例,但如何确定最佳示例顺序仍是一个未解之谜。

现存方法的局限性

目前,优化语境学习中示例顺序的方法主要分为两类:启发式方法和基于强化学习(RL)的方法。

启发式方法,例如根据示例与测试用例的相似度进行排序,缺乏明确的优化原则,效果不稳定。

基于强化学习的方法,例如 TEMPERA 和 RLPrompt,虽然理论上更优,但存在训练速度慢、实现复杂等问题。

POEM:一种基于记忆的全新优化方案

为了解决上述问题,本文提出了一种名为“POEM”(Prompting with Episodic Memory,基于片段记忆的提示&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值