引言:大型语言模型与语境学习的瓶颈
近年来,大型语言模型(LLM)的迅猛发展,例如 GPT、BERT 等,为自然语言处理(NLP)领域带来了革命性的变化。这些模型展现出惊人的文本生成和理解能力,尤其是在“语境学习”(ICL)的加持下,只需少量示例便能出色完成各类任务。
然而,语境学习的效果很大程度上取决于示例的选择和排序。不合理的示例排列可能导致模型产生偏差,影响最终结果。尽管研究者们已经探索了诸如最近邻检索等方法来选择合适的示例,但如何确定最佳示例顺序仍是一个未解之谜。
现存方法的局限性
目前,优化语境学习中示例顺序的方法主要分为两类:启发式方法和基于强化学习(RL)的方法。
启发式方法,例如根据示例与测试用例的相似度进行排序,缺乏明确的优化原则,效果不稳定。
基于强化学习的方法,例如 TEMPERA 和 RLPrompt,虽然理论上更优,但存在训练速度慢、实现复杂等问题。
POEM:一种基于记忆的全新优化方案
为了解决上述问题,本文提出了一种名为“POEM”(Prompting with Episodic Memory,基于片段记忆的提示&