在当今人工智能(AI)快速发展的时代,能够进行高效的决策已成为智能体生存与成功的关键。这种能力不仅适用于生物体,也已成为具身人工智能的主要目标之一。随着多模态大型语言模型(MLLMs)的出现,尤其是GPT-4-Vision等先进模型的引入,具身决策的能力得到了前所未有的提升。
🌐 理论的基础:多模态大型语言模型
在过去,传统的大型语言模型(LLMs)主要以文本为输入,处理文字信息。然而,面对复杂的现实世界场景,单一的文本输入已经无法满足需求。LLMs在处理多模态观察时,往往会遭遇“模态差距”,即将多种形式的信息(如图像、声音等)转换为文本时,信息的损失不可避免。为了解决这一问题,研究人员开始探索MLLMs,它们能够直接处理图像和文本,弥补这一鸿沟。
以GPT-4-Vision为例,这种模型不仅能够理解视觉信息,还能进行深入的推理。这使得它在具身决策任务中表现出色,能够在复杂的环境中进行实时决策。
📊 PCA-EVAL:全新评估基准的诞生
为了验证MLLMs在具身决策中的有效性,研究团队提出了一个全新的评估基准——PCA-EVAL。该基准