在当今信息爆炸的时代,如何快速从海量数据中提取有价值的信息是一项亟待解决的挑战。K最近邻(KNN)算法,作为一种经典的机器学习方法,因其简单易用和高效的特性,逐渐成为了研究的热点。本文将基于DSPy框架,深入探讨如何通过KNN少样本学习实现一个高效的问答系统,特别是如何在HotPotQA数据集中进行应用。
🧩 KNN算法的基本原理
KNN算法的基本思想是通过计算样本与其“邻居”之间的距离来进行分类或回归。具体来说,在给定一组训练数据和一个待预测实例时,KNN算法会选择与该实例距离最近的K个邻居,并根据这K个邻居的类别或数值来推测待预测实例的类别或数值。
在数值计算中,最常用的距离度量方式包括欧几里得距离、曼哈顿距离等。对于问答系统而言,KNN的有效性在于其能够利用已有的问答对来进行快速推理,这在数据稀缺的情况下尤为重要。
📚 DSPy框架与KNN少样本学习
DSPy是一个用于构建和训练机器学习模型的工具,提供了高层次的API来简化模型的开发过程。在本次实验中,我们将使用DSPy的KNNFewShot
模块,结合HotPotQA数据集实现一个简单的问答机器人。
首先,我们需要加载数据集并设置API密钥:
<