为什么大型语言模型不能进行推理?

大型语言模型(Large Language Models, LLMs)的出现,尤其是像GPT-3、GPT-4等,确实让人们对人工智能的推理能力充满了期待。它们能够生成连贯的文本,甚至在某些情况下给出令人惊叹的答案,以至于许多人认为它们能够进行真正的逻辑推理。然而,本文将揭示这背后的真相:大型语言模型的“推理”能力并不如表面看起来那样强大。

🎲 随机性:LLM的天生缺陷

大型语言模型的一个显著问题是随机性。这些模型的工作方式是基于概率预测,而非严格的逻辑推理。换句话说,它们预测下一个词元(token)时,选择的是最有可能的词,而不是通过逻辑推导确定的结果。

例如,如果你让模型解决一个数学问题,它的回答并不是通过逻辑演绎得出的,而是基于大量数据训练后“猜测”出的最可能答案。这就像是你在考场上没有复习到某个问题时,凭感觉写出的答案——有时你会侥幸答对,但很多时候都会出错。

🤹 控制随机性:温度调节

有人可能会说:“那我可以把模型的温度设为零,这样它就可以给出确定性的答案了。”确实,温度设为零时࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值