大型语言模型(Large Language Models, LLMs)的出现,尤其是像GPT-3、GPT-4等,确实让人们对人工智能的推理能力充满了期待。它们能够生成连贯的文本,甚至在某些情况下给出令人惊叹的答案,以至于许多人认为它们能够进行真正的逻辑推理。然而,本文将揭示这背后的真相:大型语言模型的“推理”能力并不如表面看起来那样强大。
🎲 随机性:LLM的天生缺陷
大型语言模型的一个显著问题是随机性。这些模型的工作方式是基于概率预测,而非严格的逻辑推理。换句话说,它们预测下一个词元(token)时,选择的是最有可能的词,而不是通过逻辑推导确定的结果。
例如,如果你让模型解决一个数学问题,它的回答并不是通过逻辑演绎得出的,而是基于大量数据训练后“猜测”出的最可能答案。这就像是你在考场上没有复习到某个问题时,凭感觉写出的答案——有时你会侥幸答对,但很多时候都会出错。
🤹 控制随机性:温度调节
有人可能会说:“那我可以把模型的温度设为零,这样它就可以给出确定性的答案了。”确实,温度设为零时