🌍 引言:RAG 的光与影
随着大语言模型(LLMs)的迅速崛起,越来越多的应用场景开始依赖这些模型从海量数据中生成答案。然而,随着这些模型在生成过程中不断“即兴发挥”,我们也不得不面对一个显而易见的问题——幻觉。是的,这些模型有时候会“自信满满地”给出完全错误的答案,就像一个考试作弊但仍然得满分的学生。近年来,检索增强生成(RAG) 模型应运而生,旨在通过从外部资源中检索相关信息来增强生成的准确性。然而,尽管如此,RAG 依然可能给出不靠谱的答案,有时甚至对错误答案充满信心。
所以问题来了:如何让 RAG 模型在自己不确定时主动闭嘴?
❓ 问题核心:RAG 的自信与风险
在这个问题上,传统的研究多集中于大语言模型的内在知识边界,即这些模型在回答某些问题时会产生的不确定性。然而,对于 RAG 来说,这个问题就更复杂了。除了模型自己的知识边界外,外部检索到的结果质量也会极大影响生成答案的正确性。
为了应对这个问题,本研究提出了一个崭新的任务:RAG 的风险控制&