究竟谁能信任你?——RAG模型的风险控制与反事实提示框架


🌍 引言:RAG 的光与影

随着大语言模型(LLMs)的迅速崛起,越来越多的应用场景开始依赖这些模型从海量数据中生成答案。然而,随着这些模型在生成过程中不断“即兴发挥”,我们也不得不面对一个显而易见的问题——幻觉。是的,这些模型有时候会“自信满满地”给出完全错误的答案,就像一个考试作弊但仍然得满分的学生。近年来,检索增强生成(RAG) 模型应运而生,旨在通过从外部资源中检索相关信息来增强生成的准确性。然而,尽管如此,RAG 依然可能给出不靠谱的答案,有时甚至对错误答案充满信心。

所以问题来了:如何让 RAG 模型在自己不确定时主动闭嘴?

❓ 问题核心:RAG 的自信与风险

在这个问题上,传统的研究多集中于大语言模型的内在知识边界,即这些模型在回答某些问题时会产生的不确定性。然而,对于 RAG 来说,这个问题就更复杂了。除了模型自己的知识边界外,外部检索到的结果质量也会极大影响生成答案的正确性。

为了应对这个问题,本研究提出了一个崭新的任务:RAG 的风险控制&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值