在这个高度依赖视觉与语言模型(VLMs)的时代,如何让这些模型在处理复杂的视觉问答(VQA)任务时表现得更加出色,成为了研究者们热衷探讨的核心问题。本文将深入探讨最近推出的DARE(Diverse Visual Question Answering with Robustness Evaluation)基准,它不仅挑战了现有模型的能力,还着重评估了它们的鲁棒性。
🌍 视觉语言模型的崛起与挑战
随着文本语言模型(LLMs)和视觉模型的快速发展,VLMs应运而生。它们将文本与图像的处理能力结合起来,能够在多模态环境中完成各种任务。然而,尽管VLMs在标准的图像分类和图像文本匹配任务中表现良好,但在许多关键的视觉语言推理能力上,依然显得力不从心。尤其是在计数和空间推理等任务上,现有的基准测试往往未能有效评估模型的鲁棒性。因此,DARE应运而生,旨在填补这一空白。
🧩 DARE的结构与设计
DARE基准设计精巧,涵盖五个多样化的类别,每个类别都面临着独特的挑战。这些类别包括:
- 条件计数:要求模型在特定条件下对物体进行计数。
- 排序</