在RWKV模型的世界中,State Tuning是一种独特而强大的微调方法。与传统的微调技术不同,State Tuning利用RWKV模型的RNN特性,通过调整固定大小的状态来优化模型的表现。这篇教程将引导你完成State Tuning的全过程,帮助你充分利用RWKV模型的潜力。
1. 什么是State Tuning? 🤔
State Tuning是通过调整RWKV模型的初始状态,进行微调的一种方法。由于RWKV是纯RNN结构,这意味着我们可以利用其固定大小的状态来进行高效的prompt tuning和模型对齐。这个过程的迁移能力非常强,适合需要特定知识或行为的应用场景。
2. 收集训练数据 📚
要进行State Tuning,你需要准备适合RWKV训练的binidx数据。首先,你需要将训练数据集的JSONL格式文件经过make_data.py
脚本处理,重复生成10遍,然后再转化为binidx格式:
python make_data.py your_data.jsonl 10 512