State Tuning教程:掌控RWKV模型的微调艺术

在RWKV模型的世界中,State Tuning是一种独特而强大的微调方法。与传统的微调技术不同,State Tuning利用RWKV模型的RNN特性,通过调整固定大小的状态来优化模型的表现。这篇教程将引导你完成State Tuning的全过程,帮助你充分利用RWKV模型的潜力。

1. 什么是State Tuning? 🤔

State Tuning是通过调整RWKV模型的初始状态,进行微调的一种方法。由于RWKV是纯RNN结构,这意味着我们可以利用其固定大小的状态来进行高效的prompt tuning和模型对齐。这个过程的迁移能力非常强,适合需要特定知识或行为的应用场景。

2. 收集训练数据 📚

要进行State Tuning,你需要准备适合RWKV训练的binidx数据。首先,你需要将训练数据集的JSONL格式文件经过make_data.py脚本处理,重复生成10遍,然后再转化为binidx格式:

python make_data.py your_data.jsonl 10 512
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值