无限上下文的探索:Infini-Transformer 的新纪元

🌌

在这个信息爆炸的时代,我们的计算机模型也在不断面临着如何“记住”大量信息的挑战。就如同一位背负着千斤重的图书馆管理员,试图在每次读书时都能轻松找到所需的书籍。为了应对这一挑战,谷歌推出了一个颠覆性的解决方案——Infini-Transformer,它通过一种名为“无限注意力”(Infini-attention)的新型机制,将记忆与效率完美结合,开创了处理无限上下文的新纪元。

🧠 记忆的艺术:Infini-attention 的秘诀

在传统的 Transformer 架构中,随着输入序列的增加,模型所需的内存和计算资源呈指数级增长,导致模型在处理长文本时的性能严重下降。Infini-Transformer 的核心在于其创新的“无限注意力”机制,这一机制通过引入压缩记忆(compressive memory),使得模型在处理长序列时,可以有效控制内存消耗,从而实现高效的长文本处理。

1. 扩展的点积注意力

Infini-attention 在扩展的点积注意力基础上,采用了一种新的计算方式。与传统的多头注意力(MHA)不同,Infini-attention 在每个注意力层中保留 H 个并行的压缩记忆。这样一来࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值