🌌
在这个信息爆炸的时代,我们的计算机模型也在不断面临着如何“记住”大量信息的挑战。就如同一位背负着千斤重的图书馆管理员,试图在每次读书时都能轻松找到所需的书籍。为了应对这一挑战,谷歌推出了一个颠覆性的解决方案——Infini-Transformer,它通过一种名为“无限注意力”(Infini-attention)的新型机制,将记忆与效率完美结合,开创了处理无限上下文的新纪元。
🧠 记忆的艺术:Infini-attention 的秘诀
在传统的 Transformer 架构中,随着输入序列的增加,模型所需的内存和计算资源呈指数级增长,导致模型在处理长文本时的性能严重下降。Infini-Transformer 的核心在于其创新的“无限注意力”机制,这一机制通过引入压缩记忆(compressive memory),使得模型在处理长序列时,可以有效控制内存消耗,从而实现高效的长文本处理。
1. 扩展的点积注意力
Infini-attention 在扩展的点积注意力基础上,采用了一种新的计算方式。与传统的多头注意力(MHA)不同,Infini-attention 在每个注意力层中保留 H 个并行的压缩记忆。这样一来