🧠
在机器学习的世界里,大语言模型(LLMs)的出现犹如一场革命,带来了惊人的进步。然而,随之而来的巨量内存消耗却成为了大规模训练的巨大绊脚石。想象一下,你在一条宽广的高速公路上飞驰,却突然被一块巨石挡住了去路,这就是当前大语言模型微调的现状。本文将深入探讨一种名为“分层重要性采样”的新方法(Layerwise Importance Sampling,简称LISA),它不仅能帮助我们绕过这块巨石,还能在有限的内存下取得更优的训练效果。
🔍 大语言模型的现状与挑战
随着大语言模型在文本生成、代码编写和人机对话等任务中的广泛应用,针对特定领域的微调成为了提升其下游能力的关键策略。然而,这些方法通常需要耗费大量的计算资源和时间,尤其是在进行大规模模型的微调时。例如,持续的预训练可能需要数周的时间,即使是在多块80 GB的GPU上。
为了解决这一问题,研究者们提出了参数高效微调(PEFT)技术,如低秩适应(LoRA),旨在减少可训练参数的数量。尽管LoRA在微调任务中表现出色,但在大规模数据集上却未能始终超越全参训练。这就像是你在一次马拉松比赛中,虽然起步不错,但却在最后几公里中跌出了前三名。