引言:在信息的海洋中航行 🌊
在当今信息爆炸的时代,如何有效地从海量数据中提取有用信息,如同在无边的大海中寻找宝藏。幸运的是,随着大语言模型(LLMs)的发展,我们有了更为强大的工具进行长文本处理和问答(QA)。然而,面对长文本的挑战,传统的检索增强生成(RAG)方法却常常显得无能为力。本文将介绍一种新颖的模型——UncertaintyRAG,它通过量化不确定性(尤其是基于信噪比的跨度不确定性)来改善长文本的生成与检索。
🌟 不确定性:开启长文本处理的新视角
什么是UncertaintyRAG?
UncertaintyRAG的核心在于利用信噪比(SNR)来估计文本块之间的相似性。通过这种方法,我们不仅提高了模型的校准能力,还有效降低了由于随机块分割所导致的语义不一致性。这就像给我们的模型装上了一双灵巧的“眼睛”,帮助其更精准地捕捉信息的真正含义。
SNR的魔法 ✨
在我们的实验中,我们发现,当两个文本块被连接并输入到模型中以估计相似性时,SNR所测得的不确定性能够更好地反映它们在语义空间中的对齐程度。通过这种方