在当今的人工智能领域,生成型大型语言模型(LLMs)以其在多种语言中的卓越表现而备受关注。然而,令人担忧的是,当这些模型在非英语语言中被使用时,往往会表现出更高的有害社会偏见和毒性水平。本文将深入探讨不同的微调方法如何影响模型的偏见和毒性,以及这些方法在跨语言转移中的有效性。
📚 引言:多语言模型的挑战与机遇
大多数生成型大型语言模型主要是在英语数据上进行训练,尽管它们被世界各地的不同语言使用者广泛应用。虽然这些模型在非英语语言中表现出色,但研究表明,当在这些语言中提示时,它们往往会产生有害的社会偏见和高水平的毒性文本。这种现象不仅影响了用户体验,也引发了对模型安全性和伦理性的广泛讨论。
为了解决这一问题,研究者们采用了微调技术,以便为有害的用户输入提供更安全的答案。通过对专门的数据集进行微调,研究表明,这种方法在英语中有效,并且能够转移到其他语言。然而,微调的具体方法和效果仍然需要进一步的研究。
🔍 研究方法:微调技术的比较
在本研究中,我们探讨了两种主要的微调方法:监督微调(SFT)和直接偏好优化(DPO)。前者涉及在非有害文本上进行微调,而后者