在人工智能领域,语言模型的进化就像一场永不停歇的马拉松。近年来,随着技术的不断迭代,研究人员正逐步缩小通向人工通用智能(AGI)的鸿沟。今天,我们将聚焦于一颗冉冉升起的明星——DeepSeek-V3,这是一款拥有 6710 亿参数的混合专家(Mixture-of-Experts, MoE)模型。它不仅性能卓越,还以高效的训练成本和创新的架构设计引领开源模型的新高度。让我们一起深入探讨这款模型的技术细节,揭开它背后的奥秘。
🌌 模型的诞生:从 DeepSeek-V2 到 DeepSeek-V3
如果说 DeepSeek-V2 是一颗璀璨的明珠,那么 DeepSeek-V3 则是一颗耀眼的恒星。DeepSeek-V3 在继承前代模型核心架构的基础上,进行了全面的升级和优化。它采用了两大关键技术:多头潜在注意力(Multi-head Latent Attention, MLA) 和 DeepSeekMoE 架构,并首次引入了两项创新策略:
- 无辅助损失的负载均衡策略:通过动态调整专家负载,避免传统辅助损失对模型性能的负面影响。