在人工智能的浩瀚宇宙中,语言模型(Large Language Models, LLMs)如同璀璨的星辰,点亮了自然语言处理的天空。然而,这些模型的“体型”也在不断膨胀,动辄数十亿甚至上千亿参数的规模,让它们在训练和微调时对计算资源的需求变得异常“贪婪”。于是,科学家们开始思考:有没有一种更精巧的方式,既能保持模型的性能,又能减少资源消耗?在这场追求“高效与优雅”的冒险中,DoTA(Weight-Decomposed Tensor Adaptation)应运而生。
本文将带你深入了解 DoTA 的原理与魅力,从低秩矩阵的局限性到张量分解的高维魔法,再到 DoTA 如何在性能与效率之间找到完美平衡。让我们开启这场科学探索之旅吧!
🌌 低秩矩阵的局限:二维世界的困境
在微调大型语言模型时,传统的方法通常需要调整模型的全部参数,这不仅耗时耗力,还需要巨大的存储空间。为了解决这个问题,研究者们提出了参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)方法,其中最著名的便是 LoRA(Low-Rank Adaptation)。