从矩阵到张量:DoTA 的奇妙冒险

在人工智能的浩瀚宇宙中,语言模型(Large Language Models, LLMs)如同璀璨的星辰,点亮了自然语言处理的天空。然而,这些模型的“体型”也在不断膨胀,动辄数十亿甚至上千亿参数的规模,让它们在训练和微调时对计算资源的需求变得异常“贪婪”。于是,科学家们开始思考:有没有一种更精巧的方式,既能保持模型的性能,又能减少资源消耗?在这场追求“高效与优雅”的冒险中,DoTA(Weight-Decomposed Tensor Adaptation)应运而生。

本文将带你深入了解 DoTA 的原理与魅力,从低秩矩阵的局限性到张量分解的高维魔法,再到 DoTA 如何在性能与效率之间找到完美平衡。让我们开启这场科学探索之旅吧!


🌌 低秩矩阵的局限:二维世界的困境

在微调大型语言模型时,传统的方法通常需要调整模型的全部参数,这不仅耗时耗力,还需要巨大的存储空间。为了解决这个问题,研究者们提出了参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)方法,其中最著名的便是 LoRA(Low-Rank Adaptation)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值