在人工智能领域,语言模型(LLMs)的发展如同一场持续的马拉松,而每一次技术突破都如同赛道上的一次冲刺。Kimi k1.5 的诞生,标志着强化学习(Reinforcement Learning, RL)与大语言模型结合的又一次飞跃。本文将带您深入探索 Kimi k1.5 的核心算法实现,揭示其在长链式推理(Chain-of-Thought, CoT)、多模态训练以及强化学习策略优化上的独特之处。
🌟 强化学习与语言模型的碰撞:Kimi k1.5 的核心思路
Kimi k1.5 的设计目标是通过强化学习扩展语言模型的能力。传统的语言模型依赖于静态的预训练数据,而 Kimi k1.5 则通过奖励机制(rewards)引导模型自主探索,突破了数据限制。这一策略的核心在于让模型不仅能生成答案,还能生成推理过程(CoT),从而提升其在复杂任务上的表现。
Kimi k1.5 的训练过程分为以下几个关键阶段:
- 预训练与基础微调:建立初始语言与多模态能力。
- 长链式推理(Long-CoT)微调:通过精心设计的长链推理数据集,强化模型的逻辑推理能力。