Kimi k1.5:从强化学习到多模态推理的进化之旅

在人工智能领域,语言模型(LLMs)的发展如同一场持续的马拉松,而每一次技术突破都如同赛道上的一次冲刺。Kimi k1.5 的诞生,标志着强化学习(Reinforcement Learning, RL)与大语言模型结合的又一次飞跃。本文将带您深入探索 Kimi k1.5 的核心算法实现,揭示其在长链式推理(Chain-of-Thought, CoT)、多模态训练以及强化学习策略优化上的独特之处。


🌟 强化学习与语言模型的碰撞:Kimi k1.5 的核心思路

Kimi k1.5 的设计目标是通过强化学习扩展语言模型的能力。传统的语言模型依赖于静态的预训练数据,而 Kimi k1.5 则通过奖励机制(rewards)引导模型自主探索,突破了数据限制。这一策略的核心在于让模型不仅能生成答案,还能生成推理过程(CoT),从而提升其在复杂任务上的表现。

Kimi k1.5 的训练过程分为以下几个关键阶段:

  1. 预训练与基础微调:建立初始语言与多模态能力。
  2. 长链式推理(Long-CoT)微调:通过精心设计的长链推理数据集,强化模型的逻辑推理能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值