一、架构设计:代码模型驱动的数学推理
DeepSeekMath的7B参数模型基于DeepSeek-Coder-v1.5进行初始化,这一决策源于代码训练对数学能力的特殊增益。研究团队发现,在相同计算资源下,经过代码预训练的模型在MATH数据集上表现提升达32%。这种增益源于代码与数学问题共享的符号逻辑特性。
代码训练带来两个核心优势:
- 结构化思维:代码的语法约束强化了模型对数学公式结构的理解
- 工具集成能力:代码执行环境为数学问题提供了动态验证机制
预训练阶段采用混合数据分布策略:
- 56%数学语料(精选自Common Crawl)
- 4%算法代码(AlgebraicStack)
- 40%通用数据(平衡自然语言理解)
二、GRPO算法:强化学习的效率革新
2.1 算法原理
传统PPO算法需要维护价值函数网络,导致显存占用翻倍。GRPO(Group Relative Policy Optimization)的创新在于: