DeepSeekMath:数学推理开源模型的算法革新与实现细节

一、架构设计:代码模型驱动的数学推理

DeepSeekMath的7B参数模型基于DeepSeek-Coder-v1.5进行初始化,这一决策源于代码训练对数学能力的特殊增益。研究团队发现,在相同计算资源下,经过代码预训练的模型在MATH数据集上表现提升达32%。这种增益源于代码与数学问题共享的符号逻辑特性。

代码训练带来两个核心优势:

  1. 结构化思维:代码的语法约束强化了模型对数学公式结构的理解
  2. 工具集成能力:代码执行环境为数学问题提供了动态验证机制

预训练阶段采用混合数据分布策略:

  • 56%数学语料(精选自Common Crawl)
  • 4%算法代码(AlgebraicStack)
  • 40%通用数据(平衡自然语言理解)

二、GRPO算法:强化学习的效率革新

2.1 算法原理

传统PPO算法需要维护价值函数网络,导致显存占用翻倍。GRPO(Group Relative Policy Optimization)的创新在于:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值