“在深度学习的炼丹炉里,Prompt 就像是那味关键的药引。GAP3 算法,则是一位无需老方子的炼丹大师,它能从零开始,通过遗传算法和语言模型概率的巧妙融合,自动炼制出最适合你的丹药(Prompt),显著提升预训练语言模型的性能。”
大家好,我是肆〇柒,今天想和大家深入聊聊一个极具潜力的 Prompt 优化算法——GAP3 (Generic Algorithm for Predictive Probability guided Prompting)。它就像一位 AI 时代的炼丹师,无需任何先验知识,就能自动找到最适合特定任务的 Prompt,让你的预训练语言模型(PLM)焕发新生。
🧙♂️ Prompt 炼丹的痛点:从玄学到科学的距离
近年来,预训练语言模型(PLM)如雨后春笋般涌现,例如 GPT-3、RoBERTa 等,它们在各种自然语言处理(NLP)任务中都展现出了强大的能力。尤其是在数据稀缺的少样本学习(Few-Shot Learning)场景下,PLM 更是成为了解决问题的利器。
然而,PLM 的性能很大程度上取决于 Prompt 的质量。一个精心设计的 Prompt 可以引导模型朝着正确的方向前进,反之则可能导