推理革命:3B小模型如何用两阶段训练征服多模态世界

🎯 引言:当视觉遇见逻辑的困境

在人工智能的竞技场上,大型多模态模型(LMM)如同拥有视觉与语言双翼的智慧生物。但当它们面对需要深度推理的复杂任务时,却常常像初学几何的学生——看得见图形,却解不出题目。最新研究表明,仅3B参数的LMM在旋转几何体侧面积计算任务中,错误率高达67%,而人类中学生却能轻松解决。这种差距揭示了一个残酷现实:多模态模型的推理能力,正成为制约其发展的阿喀琉斯之踵。

在这里插入图片描述

图示:LMM-R1通过勾股定理正确计算圆锥侧面积,而基线模型错误识别斜高

🌱 基础推理增强:文本训练的魔力

规则强化学习的数学特训

想象一位数学老师不再直接讲解公式,而是让学生通过大量习题自主发现规律——这正是LMM-R1的第一阶段训练哲学。研究团队采用规则强化学习(Rule-based RL),让模型在纯文本数学题海中自我探索。这种训练方式的神奇之处在于:

  • 自主纠错机
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值