【导语】
在大语言模型(LLM)不断刷新各项任务记录的今天,很多模型宣称能处理超长上下文内容,但在实际推理过程中,复杂问题往往因隐性事实的遗漏而败下阵来。今天,我们就以《Attention Reveals More Than Tokens: Training-Free Long-Context Reasoning with Attention-guided Retrieval》为蓝本,带大家通俗解读如何利用 Transformer 内部的注意力机制,来帮助模型“找回”那些被忽略的关键事实,从而提升长上下文推理能力!
──────────────────────────────
【一、长上下文的烦恼:事实虽在,模型却记不全】
大家是不是觉得,既然大模型可以处理成千上万字的文章,为什么一些简单的多跳推理题依然难倒它们?原因在于:模型虽然能够“检索”到很多明面上的事实,但一旦需要组合多个隐性信息(比如“某某比XX年轻77岁”这种需要两步推导的关系),模型往往记忆力大打折扣。研究者通过构造专门的测试套件,比如被称为“Deduction”的诊断基准,发现:当上下文内容被拉长时,一些关键的隐性事实(第二跳依赖)往往“失踪”,从而导致最终的答案错误。
举个例子,