在人工智能领域,语言模型多年来一直依赖于自回归方法(Autoregressive Models,ARMs)进行文本生成。然而,一种全新的方法——扩散模型(Diffusion Models)正悄然崛起,试图打破对自回归范式的长期依赖。这篇文章带您深入了解大语言扩散模型的工作原理、技术细节及其实验成果,同时探讨其未来可能带来的巨大变革。
🌟 模型诞生的初衷
传统语言模型通常利用自回归生成方式:令模型通过预测序列中下一个词的概率分布,从而实现连续文本的逐词生成。然而,尽管这一方法在许多任务上已取得了巨大成功,其生成文本时存在的顺序限制也带来了计算瓶颈和反向推理(reversal reasoning)困难的问题。
扩散模型最初在图像生成领域崭露头角,其核心思想是通过一系列渐进式“去噪”步骤,将噪声转变为高质量数据。将这一思路应用于语言领域,大语言扩散模型(LDM)借助“随机屏蔽”(masking)的机制,将文本数据逐步转换成完全遮蔽的状态,再由模型反向还原原始文本。正如论文中所述,这种方法不再拘泥于传统自回归的顺序生成,而是通过全局建模捕捉文本中的双向依赖关系,从而提升了生成质量与多任务能力。