评测新时代:用长链式推理提升语言模型评价

当人工智能进入日常生活,语言模型(LM)在生成自然且富有创造性文本方面表现卓越,但令人困惑的问题悄然浮现:如何客观而精细地评估这些模型的表现?近期,一项前沿研究探索了利用长链式推理(chain‑of‑thought, CoT)来扩展评测时计算,从而提升评估的准确性和鲁棒性。这篇文章将带你走进这场“评测革命”,揭示作者如何借助推理模型作为过程评估器,实现评价能力与生成能力的双向提升。


🌟 基础概念与创新突破:走出评测困局

研究的核心问题在于,传统评估方法往往依赖专门训练的奖励模型(reward models),直接预测回答的总评分;然而,对于复杂问题的评测,这种方法容易忽略解题过程中存在的逻辑漏洞。正如一位名侦探在细查嫌疑犯时需要一层一层剥离线索,评估一个复杂答案也需要逐步审视每个推理步骤的合理性。

为此,论文提出了两种全新的评测方式:

  1. 推理由结果评估器(Reasoning Outcome Evaluator)
    这种评估器会先生成一段长长的链式推理,然后依据推理过程末尾产生的判断(通常输出“1”为正确,“0”为错误),将对答案整体的正确性做出打分。通过设定诸如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值