🌱 序章:一场评测的革命
在人工智能的世界里,语言模型(LMs)如同一群才华横溢但性格各异的冒险者,闯入了医疗、教育、法律、金融、甚至人力资源等各个领域。它们被赋予了“理解人类语言”的魔法,却也面临着一个古老而棘手的问题:我们到底该如何评判它们的能力?
长期以来,业界习惯用一套“标准化试卷”——也就是基准测试(benchmark),来打分。但随着这些模型越来越聪明,基准测试的魔力逐渐失效:分数越来越高,差异越来越小,甚至有的模型早已把考题背得滚瓜烂熟。更糟糕的是,这些试卷往往和现实世界的需求南辕北辙。于是,DICE 框架横空出世,誓要打破一刀切的评测迷思,让每个模型都能在属于自己的舞台上大放异彩。
🏛️ 基准测试的王国与裂痕
2.1 现代基准测试的盛世
想象一下,语言模型们在一座巨大的竞技场里,轮番参加各种比赛:有的比拼事实知识(如 GLUE、MMLU),有的考验推理能力(MATH、GSM8K