🌌 序章:幻觉的迷宫
在人工智能的世界里,幻觉(Hallucination)就像一只调皮的狐狸,时不时在模型输出中留下虚假的脚印。无论是多模态大型语言模型(MLLMs),还是单模态的LLMs,这一问题都如影随形。尤其在医疗、法律等高风险领域,幻觉不仅仅是“说错话”那么简单,甚至可能引发灾难性的后果。
而DeCo(Dynamic Correction Decoding,动态校正解码)算法的出现,仿佛为这片迷雾点亮了一盏探路灯。它能否带领我们走出幻觉的迷宫?又是否适用于所有类型的语言模型?让我们一探究竟。
🧠 DeCo的诞生:多模态模型的幻觉克星
DeCo算法由Wang等人于2024年提出,最初的目标是解决多模态大型语言模型(MLLMs)在处理图文任务时的幻觉问题。研究发现,虽然MLLMs在早期层能够准确识别视觉对象,但在深层输出时,语言模型的“知识先验”会压制这些视觉信息,导致模型“看见”了却“说错了”。
DeCo的核心思想是:动态选择早期层的视觉信息,并将其按比例整合到最终输出中,校正模型的决策<