幻觉的迷宫:DeCo算法与大型语言模型的真相之旅

🌌 序章:幻觉的迷宫

在人工智能的世界里,幻觉(Hallucination)就像一只调皮的狐狸,时不时在模型输出中留下虚假的脚印。无论是多模态大型语言模型(MLLMs),还是单模态的LLMs,这一问题都如影随形。尤其在医疗、法律等高风险领域,幻觉不仅仅是“说错话”那么简单,甚至可能引发灾难性的后果。

而DeCo(Dynamic Correction Decoding,动态校正解码)算法的出现,仿佛为这片迷雾点亮了一盏探路灯。它能否带领我们走出幻觉的迷宫?又是否适用于所有类型的语言模型?让我们一探究竟。


🧠 DeCo的诞生:多模态模型的幻觉克星

DeCo算法由Wang等人于2024年提出,最初的目标是解决多模态大型语言模型(MLLMs)在处理图文任务时的幻觉问题。研究发现,虽然MLLMs在早期层能够准确识别视觉对象,但在深层输出时,语言模型的“知识先验”会压制这些视觉信息,导致模型“看见”了却“说错了”。

DeCo的核心思想是:动态选择早期层的视觉信息,并将其按比例整合到最终输出中,校正模型的决策<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值