AI城管自动识别摊贩占道经营出店经营行为系统对城市道路环境进行自动AI实时监测,当AI城管自动识别摊贩占道经营出店经营行为监测到流动商贩占道经营时,立即告警将告警截图和视频保存并推送给后台监控大数据管理平台以及相关管理人员。AI城管自动识别摊贩占道经营出店经营行为提升监控区域的管控效率,协助城管人员快速维护城管日常生活秩序和环境。

在CNN出现之前,对于图像的处理一直都是一个很大的问题,一方面因为图像处理的数据量太大,比如一张512 x 512的灰度图,它的输入参数就已经达到了252144个,更别说1024x1024x3之类的彩色图,这也导致了它的处理成本十分昂贵且效率极低。另一方面,图像在数字化的过程中很难保证原有的特征,这也导致了图像处理的准确率不高。

而CNN网络能够很好的解决以上两个问题。对于第一个问题,CNN网络它能够很好的将复杂的问题简单化,将大量的参数降维成少量的参数再做处理。也就是说,在大部分的场景下,我们使用降维不会影响结果。比如在日常生活中,我们用一张1024x1024x3表示鸟的彩色图和一张100x100x3表示鸟的彩色图,我们基本上都能够用肉眼辨别出这是一只鸟而不是一只狗。这也是卷积神经网络在图像分类里的一个重要应用。

AI城管自动识别摊贩占道经营出店经营行为 CNN_cnn

随着社会的发展和城市的进步,人们的生活水平也越来越高,大家对生活环境以及空气质量也更加重视。对于城市日常生活中流动商贩出店经营的违法行为危害城市市容秩序和影响道路交通秩序。除此之外,油烟飞扬摊位零乱,使城市环境卫生变得恶劣。并且流动摊贩多在热闹路段、且多为车流人流高峰期也会对摆摊人员自身造成严重的危险。AI城管自动识别摊贩占道经营出店经营行为应运而生。

import numpy as np
def convert(size, box):
    """
    将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
    :param size: 图片的尺寸: [w,h]
    :param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
    :return: 转换后的 [x,y,w,h]
    """

    x1 = int(box[0])
    y1 = int(box[1])
    x2 = int(box[2])
    y2 = int(box[3])

    dw = np.float32(1. / int(size[0]))
    dh = np.float32(1. / int(size[1]))

    w = x2 - x1
    h = y2 - y1
    x = x1 + (w / 2)
    y = y1 + (h / 2)

    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return [x, y, w, h]
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.

AI城管自动识别摊贩占道经营出店经营行为通过yolo深度学习技术对城市道路进行实时监测,当AI城管自动识别摊贩占道经营出店经营行为监测到道路上流动商贩占道经营时,立即告警并通知相关人员及时制止。AI城管自动识别摊贩占道经营出店经营行为提升城管监控区域的管控执行效率,对违规摆摊出店经营等违规行为形成强大的震慑作用。AI城管自动识别摊贩占道经营出店经营行为真正做到事前预警常态检测,有效弥补传统城管执行管理维护城市秩序中的缺陷。