图像数据不足的处理方法

本文探讨了图像分类任务中训练数据不足导致的过拟合问题,提出通过简化模型(如线性替代非线性)、正则化(L1/L2)、集成学习和dropout等方法来减少模型复杂性。同时,通过数据增强手段如旋转、噪声添加、色彩变换和亮度调整,提升模型泛化能力。
摘要由CSDN通过智能技术生成

图像分类任务中,训练数据不足带来的问题,主要是过拟合方面。
处理方法分为两类,
一是基于模型的方法,包括简化模型(将非线性模型简化为线性模型),添加约束项以缩小假设空间(如L1 L2正则项),集成学习,dropout超参数等;
二是基于数据的方法,
1.一定程度内的随机旋转,平移,缩放,裁剪,填充,左右翻转等
2.添加噪声,椒盐噪声,高斯白噪声
3.颜色变换,在图像的rgb空间上进行主成分分析,得到3个主成分的特征向量和特征值,然后在rgb值上添加增量。
4.改变亮度,清晰度,对比度,锐度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

骨子带刺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值