人工智能数学基础01--高等数学基础(极限)

本文详细介绍了人工智能领域必备的数学基础知识,重点聚焦于极限概念,包括极限的定义、数列、极限符号表示及其运算法则。讨论了等价无穷小替换定理、洛必达法则和泰勒公式在解决极限问题中的应用,为理解和应用深度学习、机器学习算法打下坚实的数学基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

极限定义

某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A ( 永远不能够等于A,但是取等于A 已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值” 。

数列

按照一定次序排列的一列数:u_{1},u_{2},u_{3},...u_{n},...,其中u_{n}叫做通项。

对于数列\left \{ u_{n} \right \},如果当 n 无限增大时,其通项无限接近于一个常数A,则称该数列以A为极限,或称数列收敛于A,否则称数列为发散。

极限符号表示

x\rightarrow \infty 表示:当 \left | x \right | 无限增大时;

x\rightarrow +\infty 表示:当 x 无限增大时;

x\rightarrow -\infty 表示:当 x 无限减小时;

x\rightarrow x_{0} 表示:当 x 从 x_{0} 的左右两侧无限接近于  x_{0} 时;

x\rightarrow x_{0}^{+} 表示:当 x 从 x_{0} 的右侧无限接近于 x_{0} 时;

x\rightarrow x_{0}^{-} 表示: 当 x 从 x_{0} 的左侧无限接近于 x_{0} 时;

极限存在的两个重要法则

  • 夹逼定理

设:

  1. 在*的去心邻域内g(x)\leqslant f(x)\leqslant h(x)
  2. \lim_{x\rightarrow *}g(x)=\lim_{x\rightarrow *}h(x)=A

则:

       \lim_{x\rightarrow *}f(x)=A

注:

  1. 夹逼定理对于数列同样成立;
  2. 上面的A换成 +\infty 或者  -\infty ,定理也成立
  • 单调有界定理

      设数列 \left \{u _{n} \right \} 单调增加(减少)且有上(下)界M(m),则 \lim_{n \to \infty }u_{n} 存在,且

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值