极限定义
某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A ( 永远不能够等于A,但是取等于A 已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值” 。
数列
按照一定次序排列的一列数:,其中
叫做通项。
对于数列,如果当 n 无限增大时,其通项无限接近于一个常数A,则称该数列以A为极限,或称数列收敛于A,否则称数列为发散。
极限符号表示
表示:当
无限增大时;
表示:当 x 无限增大时;
表示:当 x 无限减小时;
表示:当 x 从
的左右两侧无限接近于
时;
表示:当 x 从
的右侧无限接近于
时;
表示: 当 x 从
的左侧无限接近于
时;
极限存在的两个重要法则
-
夹逼定理
设:
- 在*的去心邻域内
;
则:
注:
- 夹逼定理对于数列同样成立;
- 上面的A换成
或者
,定理也成立
-
单调有界定理
设数列 单调增加(减少)且有上(下)界
,则
存在,且