“在网络安全隐患日益凸显的大环境下,利用 AI 技术综合提升 Web 防护产品的防御能力,来弥补传统规则匹配的 Web 攻击缺陷已成为业内共识,但 AI 引擎的加入也增加了对性能的要求。为此,我们基于英特尔® TADK 打造了针对 Web 攻击的 AI 高性能检测方案。该方案具有较高检测准确率及泛化能力,为持续创新开发 Web 防护产品提供了宝贵经验。”
顾杜娟
主任研究员
绿盟科技天枢实验室
近年来广受关注的 Web 防护产品,如 Web 应用程序和 API 保护平台 (WAAP) 等,能在应用层——即开放式系统互联 (Open System Interconnection, OSI) 模型的第七层提供针对黑客攻击的有效方案。但传统 Web 防护解决方案通常依靠规则引擎等方法来防御 Web 攻击,而随着技术迭代速度的加快以及企业业务场景的变化,基于Web 应用构建的业务场景具有越来越高的复杂度,使基于规则构建的安全策略的缺陷日益凸显,迫使企业需要不断调整规则来应对攻击者的挑战。然而,这不仅极为依赖专家资源,使运维成本居高不下,同时漏报率、误报率等问题也不断攀升。
得益于人工智能 (Artificial Intelligence, AI) 技术的发展,结合 AI 技术来提升 Web 防护产品的防御能力已逐渐成为业界共识。借助 AI 安全分析引擎对 Web 访问数据进行智能学习和建模,能有效增强识别未知威胁的能力,提升 Web 防护产品的检测准确率。因应这一趋势,绿盟科技集团股份有限公司 (以下简称“绿盟科技”) 天枢实验室基于数据智能安全的前沿研究,不断探索将各类 AI 算法应用于包括 Web 防护产品在内的安全解决方案中。
为进一步提升融合 AI 分析引擎的 Web 防护产品的应用效能,并加速商用化落地,绿盟科技天枢实验室与英特尔合作,基于英特尔® 流量分析开发工具套件 (Traffic Analytics Development Kit, TADK) 打造针对 SQL 注入 (SQL Injection, SQLI) 攻击、跨站脚本 (Cross Site Scripting, XSS) 攻击的 AI 高性能检测方案。下述一系列测试结果表明,新方案中基于英特尔® TADK 获得的 AI 模型有着良好的检测准确率1,并具有较高的泛化能力 (Generalization Ability)。
01
背景与挑战:
Web 防护解决方案需要借助人工智能来提升效能
各类 Web 应用,包括各类互联网站点、企业信息化系统等在为人们的日常生活、企业的业务发展带来更多便利的同时,也正在成为黑客攻击的重要目标。攻击者利用形形色色的攻击手段,诸如 SQL 注入攻击、 XSS 攻击等对用户的隐私、企业关键数据进行窃取或内容篡改,不仅严重侵害用户利益,也对企业信息安全造成巨大危害。
为应对新型攻击,越来越多的企业与组织正将面向 Web 安全构建的高级 Web API 防护、 Web 应用安全防护等方案放在越来越重要的位置。而这些方案中,基于规则引擎、语义引擎等方法的产品已在市场中获得了广泛的运用。
规则引擎是目前 Web 防护产品中识别和阻止已知攻击的常见检测方法,具有解释性好、检出问题后有明确处置建议等优势。以业内 Web 应用防护系统为例,得益于所积累的大量静态规则,系统可对风险特征、行为