caffe
文章平均质量分 80
shu_qdHao
这个作者很懒,什么都没留下…
展开
-
Ubuntu16.04下安装caffe,可GPU加速
关于caffe的安装,这里首先要安装Ubuntu16.04,博客上有很多教程。推介三点:1.别在虚拟机上装,推荐双系统安装。2.采用刻盘安装,关于刻盘安装方法,网上都有教程。由于每个人的电脑版本型号不一样,在安装的过程中同一问题会出现不一样的操作,这方面大家有问题的可以在下面评论,lz尽量帮忙解答。3.在安装过程中,要分盘,我介意最少200G的空间,因为大部分是用来搞深度学习的,数据采集需要很大的...原创 2018-02-26 11:16:28 · 1027 阅读 · 0 评论 -
用自己的数据集训练faster-rcnn时出现的一些问题及总结(五)
关于faster-rcnn的原理训练流程及其数据集的制备,已经都已完成。那么问题来了,“自己制备的数据集,比如说自己为了增强数据集,进行图片翻转操作,然后记录坐标这样的数据集,在训练的过程中出现的问题”一、在调用append_flipped_images函数时出现: assert (boxes[:, 2] >= boxes[:, 0]).all()网上查资料说:出现这个问题主要是自己的数据集...原创 2018-04-14 13:06:45 · 2119 阅读 · 0 评论 -
faster-rcnn的训练流程及其如何训练自己的数据集(二)
接着上篇继续,上篇写到开始调用Solver的train_model函数了。OK ! ! ! 3.train_net()中train_model()的调用前面已经知道了roidb提供了标注信息,imdb提供了一个数据基类,里面有一些工具接口。那么实际网络跑起来的时候,也需要准备图像数据的输入。因此接下来关注Solver的train_model成员函数中每次图像数据是如何生成的。data_layer ...原创 2018-04-13 20:45:38 · 4235 阅读 · 0 评论 -
faster-rcnn的训练流程及其如何训练自己的数据集(三)
到这篇为止,关于faster rcnn已经解读一大半了。OK!!!上一篇讲到anchor_target _layer()知道了该层函数的目的就是为每个位置的9个anchors生成表示正负样本的标签和回归的目标值,以及权重,提供给RPN进行训练。*reshape_layeranchor_target_layer()该层执行完毕后,我们继续回到网络模型中观看下一层,是一个卷积层,该层的作用是计算rpn...原创 2018-04-13 22:32:56 · 5467 阅读 · 5 评论