cosine

Jaccard系数(杰卡德系数)

cosine更适合稠密空间,Jaccard和tfidf都适合稀疏空间.
狭义Jaccard相似度,计算两个集合之间的相似程度,元素的“取值”为0或1
对集合A和B,Jaccard相似度计算如下:
Jaccard(A, B)= |A intersectB| / |A union B|
相似度数值在[0, 1]之间,当A==B的时候,为1. 优缺点,就是元素的取值只能是0或者1,无法利用更丰富的信息
由相似度,可以转换成Jaccard距离:
Jaccard distance (A, B) = 1- Jaccard(A, B)
TF-IDF
大概估计文本相似度时,使用TF就可以了。当我们使用文本相似度进行检索的类似场景时(如搜索引擎中的query relevence的计算),此时TF-IDF更好一些。
- tf/tf-idf为每一个词汇计算得到一个数字,而word embedding将词汇表示成向量
- tf/tf-idf在文本分类的任务中表现更好一些,而word embedding的方法更适用于来判断上下文的语义信息(这可能是由word embedding的计算方法决定的)。
曼哈顿距离
如果直接使用AB的欧氏距离(欧几里德距离:在二维和三维空间中的欧

 
                   
                   
                   
                   本文总结了多种相似性度量方法,包括余弦相似度、Jaccard系数、TF-IDF、曼哈顿距离、欧几里得距离和明可夫斯基距离。余弦相似度适合稠密空间,Jaccard和TF-IDF适用于稀疏空间。Jaccard系数通过计算两个集合的交集与并集比例来评估相似度。TF-IDF在文本检索和分类任务中有良好表现。曼哈顿距离通过加法计算,适合快速运算;欧几里得距离衡量连续数据的绝对距离,但需确保各维度指标在同一尺度。明可夫斯基距离是一般化的距离公式,包括曼哈顿和欧几里得距离。
本文总结了多种相似性度量方法,包括余弦相似度、Jaccard系数、TF-IDF、曼哈顿距离、欧几里得距离和明可夫斯基距离。余弦相似度适合稠密空间,Jaccard和TF-IDF适用于稀疏空间。Jaccard系数通过计算两个集合的交集与并集比例来评估相似度。TF-IDF在文本检索和分类任务中有良好表现。曼哈顿距离通过加法计算,适合快速运算;欧几里得距离衡量连续数据的绝对距离,但需确保各维度指标在同一尺度。明可夫斯基距离是一般化的距离公式,包括曼哈顿和欧几里得距离。
           最低0.47元/天 解锁文章
最低0.47元/天 解锁文章
                           
                       
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   6113
					6113
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            