var tag=″;var tag_code='69456492fde701eebef17a5f67ab482e'; var rquotebligid=′8b2a28790102wnkh′;var worldcup='0'; var $worldcupball='0'; |
1、tf.ones(shape,type=tf.float32,name=None)
tf.ones([
2
,
3
], int32) ==> [[
1
,
1
,
1
], [
1
,
1
,
1
]]
tf.zeros([
2
,
3
], int32) ==> [[
0
,
0
,
0
], [
0
,
0
,
0
]]
新建一个与给定的tensor类型大小一致的tensor,其所有元素为1。
# ‘tensor’ is [[1, 2, 3], [4, 5, 6]]
tf.ones_like(tensor) ==> [[
1
,
1
,
1
], [
1
,
1
,
1
]]
新建一个与给定的tensor类型大小一致的tensor,其所有元素为0。
# ‘tensor’ is [[1, 2, 3], [4, 5, 6]]
tf.ones_like(tensor) ==>
[[
0
,
0
,
0
], [
0
,
0
,
0
]]
创建一个形状大小为dim的tensor,其初始值为value
# Output tensor has shape [2, 3].
fill([2, 3], 9) ==> [[9, 9, 9]
[9, 9, 9]]
创建一个常量tensor,先给出value,可以设定其shape
# Constant 1-D Tensor populated with value list.
tensor = tf.constant([
1
,
2
,
3
,
4
,
5
,
6
,
7
]) => [
1
2
3
4
5
6
7
]
# Constant 2-D tensor populated with scalar value -1.
tensor = tf.constant(-
1.0
, shape=[
2
,
3
]) => [[-
1.
-
1.
-
1.
] [-
1.
-
1.
-
1.
]
返回一个tensor,该tensor中的数值在start到stop区间之间取等差数列(包含start和stop),如果num>1则差值为(stop-start)/(num-1),以保证最后一个元素的值为stop。
其中,start和stop必须为tf.float32或tf.float64。num的类型为int。
tf.linspace(10.0, 12.0, 3, name=”linspace”) => [ 10.0 11.0 12.0]
返回一个tensor等差数列,该tensor中的数值在start到limit之间,不包括limit,delta是等差数列的差值。
start,limit和delta都是int32类型。
# ‘start’ is 3
# ‘limit’ is 18
# ‘delta’ is 3
tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]
# ‘limit’ is 5 start is 0
tf.range(start, limit) ==> [0, 1, 2, 3, 4]
返回一个tensor其中的元素的值服从正态分布。
2、tf.zeros(shape,type=tf.float32,name=None)
3、tf.ones_like(tensor,dype=None,name=None)
4、tf.zeros_like(tensor,dype=None,name=None)
5、tf.fill(dim,value,name=None)
6、tf.constant(value,dtype=None,shape=None,name=’Const’)
7、tf.linspace(start,stop,num,name=None)
8、tf.range(start,limit=None,delta=1,name=’range’)
9、tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)
seed
: