1 题目:数组中的第K个最大元素
官方标定难度:中
给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。
请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。
示例 1:
输入: [3,2,1,5,6,4], k = 2
输出: 5
示例 2:
输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4
提示:
1
<
=
k
<
=
n
u
m
s
.
l
e
n
g
t
h
<
=
1
0
5
1 <= k <= nums.length <= 10^5
1<=k<=nums.length<=105
−
1
0
4
<
=
n
u
m
s
[
i
]
<
=
1
0
4
-10^4 <= nums[i] <= 10^4
−104<=nums[i]<=104
2 solution
直接用堆排序,找到 top - k
代码
class Solution {
public:
int findKthLargest(vector<int> &nums, int k) {
/*
* 维护大小为 k 的堆
* 时间复杂度为 (n + k)logk
*/
priority_queue<int, vector<int>, greater<>> topK;
for (int i: nums) {
topK.push(i);
if (topK.size() > k) topK.pop();
}
return topK.top();
}
};
结果
3 进阶
用快速排序思路,只找第 k 个元素,即不需要完全排序。
代码
class Solution {
public:
int partition(vector<int> &nums, int left, int right) {
if (right <= left) return left;
int pivot = nums[right];
int i = left - 1;
for (int j = left; j < right; j++) {
if (nums[j] < pivot) {
swap(nums[++i], nums[j]);
}else if(nums[j] == pivot){
if(rand() % 2){
swap(nums[++i], nums[j]);
}
}
}
swap(nums[i + 1], nums[right]);
return i + 1;
}
int quickSelect(vector<int> &nums, int left, int right, int index) {
int pivotIndex = partition(nums, left, right);
if (pivotIndex == index) return nums[index];
else if (pivotIndex > index) return quickSelect(nums, left, pivotIndex - 1, index);
return quickSelect(nums, pivotIndex + 1, right, index);
}
int findKthLargest(vector<int> &nums, int k) {
/*
* 用快速选择算法:
* 即快速排序的思路
*/
return quickSelect(nums, 0, nums.size() - 1, nums.size() - k);
}
};