微信搜索【前端食堂】你的前端食堂,记得按时吃饭。
本文已收录在前端食堂 Github https://github.com/Geekhyt/front-end-canteen,感谢Star。
经过数据结构与算法先导篇的洗脑
,不知道大家对数据结构与算法重要性的认知有没有上了一层台阶。(虽然阅读量少的可怜)。没看过的建议先去看先导篇前端如何搞定数据结构与算法(先导篇)
不过没关系,至少是有同学在评论区反馈期待下一篇的,那就要坚持把这个系列写下去,今天来给大家聊一聊在数据结构与算法中占了半壁江山的概念。
时间复杂度和空间复杂度
时间管理大师 艾克:有的时候,时光还是有他的好处的。两极反转!
拿英雄联盟举例,比如当 IG
夺得 S
系列赛总冠军后,你会发现一大群只有意识
,但操作已经跟不上的玩家出现在排位赛的视野当中。(没错,就是我们)在学生时代,我们也是钻石、大师级的高手。然而因为工作,我们只能告别我们的青春。但是,意识
还在!
回到本文,面试时面试官考察你算法能力的时候,时间复杂度和空间复杂度也是绕不过去的坎。你不仅需要掌握多种解题思路,而且要能够从复杂度分析的角度找到最优解,这样才能征服面试官。工程中,选取最优的算法则更为重要。一个优秀的算法能节约的系统成本和维护成本都是巨大的。
「话不多说,上才艺!」
(上概念)
首先理解时间和空间:
- 「时间:执行当前算法所消耗的时间」
- 「空间:执行当前算法需要占用多少内存空间」
再加上复杂度:
- 「时间复杂度:全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。」
- 「空间复杂度:全称就是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系。」
也就是说,算法的执行效率由执行时间、存储空间
两个方面决定。复杂度分析就是用来分析算法执行效率与数据规模之间的关系
,包括时间复杂度
和空间复杂度
。
为什么搞出这两个概念呢?还嫌我需要理解的概念不够多吗?
其实,你也可以进行事后统计法,俗称 「马后炮」。不过既然都叫马后炮了,那肯定是有它的缺点的。
- 事后统计的测试一般都需要依附于具体的环境,比如公司的
DEV、SIT、UAT
等环境机器的配置都不同,那么测出来的结果也会有差别。说白了,你拿同样一段代码,在不同的处理器下(i9、i5、i3)
来运行,测试出来的结果也是不同的。 - 除了环境,测试结果受数据规模的影响也很大。熟悉排序算法的同学们肯定知道,不同的数据规模下,排序算法的执行效率也会不同。
所以,我们需要一种复杂度分析法,进行事前分析。帮助我们在写代码的过程中尽可能的降低复杂度,这样代码不但在不同的环境下都能以最快的效率执行。而且,这种方法也不需要用具体数据规模的数据来进行测试,就可以粗略的计算出执行效率。这样就把事后统计法的缺点给 cover 了,一举多得。
大 O 表示法
大 O 符号由德国数论学家保罗·巴赫曼 Paul Bachmann 在 1892 年的著作 《解析数论》首先引入,后由另一位德国数论学家 艾德蒙·朗道 Edmund Landau 推广。
T(n) = O(f(n))
所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。
- T(n):代码执行的时间
- n:数据规模
- f(n):每行代码执行的次数总和
- O:表示 T(n) 与 f(n) 成正比
注意,初学者可能会认为这种方法就代表真实的代码执行时间,并不是这样,其代表的是代码的执行时间随数据规模增长的变化趋势。
常见的时间复杂度
按数量级递增如下:
常量阶 O(1)
对数阶 O(logn)
线性阶 O(n)
线性对数阶 O(nlogn)
平方阶 O(n^2)
立方阶 O(n^3)
指数阶 O(2^n)
阶乘阶 O(n!)
其中,指数阶
和阶乘阶
会随着数据规模 n 的增大,执行时间急剧增长,十分低效,我们暂且不去分析。下面我们通过代码来逐一理解其余的时间复杂度。
常量阶 O(1)
const a = 1;
let b = 2;
上述代码,执行时消耗的时间不受某个变量 (n) 的增长而影响,所以它的时间复杂度为 O(1)。也就是说,一般情况下除了循环语句、递归语句,时间复杂度都为 O(1)。
对数阶 O(logn)
let i = 1;
const n = 6;
while (i < n) {
i = i * 2;
}
观察上述代码,当循环 x 次后,循环退出。也就是说 2 的 x 次方等于 n。那么 x = log2^n,也就是循环 log2^n 次后循环退出,得出时间复杂度为 O(logn)。二分查找的时间复杂度就是 O(logn)。
线性阶 O(n)
const n = 996;
for (let i = 0; i <= n; i++) {
console.log('来过' + i +'次前端食堂吃饭');
}
毫无疑问,for循环里的代码会执行 n 遍,所以这类代码的时间复杂度就是 O(n)。计数排序、基数排序、桶排序的时间复杂度都是 O(n)。
线性对数阶 O(nlogn)
let j = 1;
const n = 6;
for (let i = 0; i <= n; i++) {
while (j < i) {
j = j * 2;
}
}
理解了对数阶和线性阶,线性对数阶理解起来就很容易了,就是将时间复杂度为 O(logn) 的代码循环 n 遍,那么它的时间复杂度就是 O (nlogn)。归并排序、快速排序、堆排序的时间复杂度都是 O(nlogn)。
平方阶 O(n^2)
const n = 6;
for (let i = 0; i <= n; i++) {
for (let j = 0; j <= n; j++) {
console.log('前端食堂的饭真香');
}
}
平方阶就是把 O(n) 的代码再嵌套一层循环,它的时间复杂度就是 O(n^2)了。冒泡排序、插入排序、选择排序的时间复杂度都是 O(n^2)。
至于 O(n^3) 就是在 O(n^2) 的基础上再嵌套一层循环。(俄罗斯套娃)
我们采用大 O 表示法进行复杂度分析的时候,是可以忽略系数的,一般情况下只需要关注循环执行次数最多的一段代码进行分析即可。
除此之外,「还有最好情况时间复杂度、最坏情况时间复杂度、平均情况时间复杂度以及均摊时间复杂度等」。在实际中,大多数情况下并不是特别常用,这里不再展开。
在现实中,往往代码会比较复杂,这里总结了几条判断时间复杂度的小技巧送给你:
单段代码看高频:循环
多段代码取最大:有循环和多重循环的情况,取多重循环的复杂度
嵌套代码求乘积:循环中的递归
多个规模求和:分别有两个参数控制两个循环的次数,取二者的复杂度相加
常见的空间复杂度
O(1)
O(n)
O(n^2)
我们还是通过代码来逐个分析:
O(1)
const a = 1;
let b = 2;
我们定义的变量a、b所占有的空间并不会随着某个变量的变化而变化,所以它的空间复杂度为 O(1)。
O(n)
let arr = [];
const n = 996;
for (let i = 0; i < n; i++) {
arr[i] = i;
}
arr 所占用的内存由 n 来决定,会随着 n 的增大而增大,所以它的空间复杂度就是 O(n)。「如果初始化一个二维数组 n*n
,那么它的空间复杂度就是 O(n^2)。」
除此之外,O(logn)、O(nlogn) 这样的对数阶空间复杂度在平时也很少见,这里不再展开。
「一般在实际中,空间复杂度和你初始化的数组长度有关。除此之外,也和递归的深度有关。」
时空转换
时间复杂度和空间复杂度往往是相互影响的,两者不可得兼。在算法解题套路以及工程中中,根据实际情况,常用的做法就是空间换时间。比如:记忆化搜索、缓存等。
后续算法系列专栏计划
- LeetCode刷题心得
- 常见算法解题套路