如果序列 X_1, X_2, ..., X_n
满足下列条件,就说它是 斐波那契式 的:
n >= 3
- 对于所有
i + 2 <= n
,都有X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列,找到 A
中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。
(回想一下,子序列是从原序列 A
中派生出来的,它从 A
中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8]
是 [3, 4, 5, 6, 7, 8]
的一个子序列)
示例 1:
输入: [1,2,3,4,5,6,7,8] 输出: 5 解释: 最长的斐波那契式子序列为:[1,2,3,5,8] 。
示例 2:
输入: [1,3,7,11,12,14,18] 输出: 3 解释: 最长的斐波那契式子序列有: [1,11,12],[3,11,14] 以及 [7,11,18] 。
提示:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
- (对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%)
对于此题,首先想到的是dfs搜索,搜索每一个斐波那契数列,遇到更长的就记录下来。
但是我们会发现,对于一个数列比如1,2,3,5,8.....我们从5开始搜索最终得到和从8搜索一样的结果,这就产生了重复计算,
因此我们要采取动态规划,而不是dfs搜索。
我们假设dp[i][j]是以A【i】与A【j】结尾的数列(因为默认了Ai<Aj)。
所以对于类似......A[i],A[j]这个数列如果有A[k]==A[i]+A[j],那么这数列就变成了.....A[i],A[j],A[k].
dp[j][k]=dp[i][j]+1
上述式子便是转移方程。
我们考虑初始化的情况:对于dp[i][i]意思是两个相同的数字做结尾,是不存在的!因此dp[i][i]=0
而其他的情况,只要处于两个不同的式子,那么长度就是2.所以dp【i】【j】=2,
依靠转移方程,我们可以得到如下的代码:
class Solution:
def lenLongestFibSubseq(self, A):
"""
:type A: List[int]
:rtype: int
"""
if not A:
return 0
d={}
for i in range(len(A)):
d[A[i]]=i
dp=[[1 if x==y else 2 for x in range(len(A))] for y in range(len(A))]
ans=0
for i in range(len(A)):
for j in range(i+1,len(A)):
t=A[i]+A[j]
if d.get(t,-1)!=-1:
k=d[t]
dp[j][k]=max(dp[j][k],dp[i][j]+1)
ans=max(dp[j][k],ans)
return ans
字典d是值-下标映射,为了更快的查找下标k。
经过我的测试,这个代码是能通过除了最后两三组最大数据的所有测试。
然后我参考了其他代码:
class Solution(object):
def lenLongestFibSubseq(self, A):
"""
:type A: List[int]
:rtype: int
"""
vset = set(A)
dp = collections.defaultdict(lambda: collections.defaultdict(int))
size = len(A)
ans = 0
for i in range(size):
x = A[i]
for j in range(i + 1, size):
y = A[j]
if x + y not in vset: continue
dp[y][x + y] = max(dp[y][x + y], dp[x][y] + 1)
ans = max(dp[y][x + y], ans)
return ans and ans + 2 or 0
来源:http://bookshadow.com/weblog/2018/07/22/leetcode-length-of-longest-fibonacci-subsequence/
这个作者用x,y分别代表A【i】,A【j】然后用二元默认字典来收集数据。
但是,最开始我的代码里dp的构造是确确实实花费了平方的时间了。(但是set与dict速度几乎相同)
所以相当于省去了半个O(n^2)时间。
最终下面的代码可以通过测试。