leetcode873. 最长的斐波那契子序列的长度

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列,找到 A 中最长的斐波那契式的子序列的长度。如果一个不存在,返回  0 。

(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)

 

示例 1:

输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。

示例 2:

输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。

 

提示:

  • 3 <= A.length <= 1000
  • 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
  • (对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%)

 

 

对于此题,首先想到的是dfs搜索,搜索每一个斐波那契数列,遇到更长的就记录下来。

但是我们会发现,对于一个数列比如1,2,3,5,8.....我们从5开始搜索最终得到和从8搜索一样的结果,这就产生了重复计算,

因此我们要采取动态规划,而不是dfs搜索。

我们假设dp[i][j]是以A【i】与A【j】结尾的数列(因为默认了Ai<Aj)。

所以对于类似......A[i],A[j]这个数列如果有A[k]==A[i]+A[j],那么这数列就变成了.....A[i],A[j],A[k].

dp[j][k]=dp[i][j]+1

上述式子便是转移方程。

我们考虑初始化的情况:对于dp[i][i]意思是两个相同的数字做结尾,是不存在的!因此dp[i][i]=0

而其他的情况,只要处于两个不同的式子,那么长度就是2.所以dp【i】【j】=2,

依靠转移方程,我们可以得到如下的代码:

class Solution:
    def lenLongestFibSubseq(self, A):
        """
        :type A: List[int]
        :rtype: int
        """
        if not A:
            return 0
        d={}
        for i in range(len(A)):
            d[A[i]]=i
        dp=[[1 if x==y else 2 for x in range(len(A))] for y in range(len(A))]
        ans=0
        for i in range(len(A)):
            for j in range(i+1,len(A)):
                t=A[i]+A[j]
                if d.get(t,-1)!=-1:
                    k=d[t]
                    dp[j][k]=max(dp[j][k],dp[i][j]+1)
                    ans=max(dp[j][k],ans)
        return ans

字典d是值-下标映射,为了更快的查找下标k。

经过我的测试,这个代码是能通过除了最后两三组最大数据的所有测试。

然后我参考了其他代码:

class Solution(object):
    def lenLongestFibSubseq(self, A):
        """
        :type A: List[int]
        :rtype: int
        """
        vset = set(A)
        dp = collections.defaultdict(lambda: collections.defaultdict(int))
        size = len(A)
        ans = 0
        for i in range(size):
            x = A[i]
            for j in range(i + 1, size):
                y = A[j]
                if x + y not in vset: continue
                dp[y][x + y] = max(dp[y][x + y], dp[x][y] + 1)
                ans = max(dp[y][x + y], ans)
        return ans and ans + 2 or 0

来源:http://bookshadow.com/weblog/2018/07/22/leetcode-length-of-longest-fibonacci-subsequence/

这个作者用x,y分别代表A【i】,A【j】然后用二元默认字典来收集数据。

但是,最开始我的代码里dp的构造是确确实实花费了平方的时间了。(但是set与dict速度几乎相同)

所以相当于省去了半个O(n^2)时间。

最终下面的代码可以通过测试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值