基于MLKit的Android人脸识别应用开发实践
https://gitee.com/wenhua512/face-recognition
1. 项目概述
1.1 功能特点
- 实时人脸检测与跟踪
- 人脸特征提取与识别
- 自动/手动采集模式
- 人脸数据管理
- 相机参数优化
1.2 技术选型
- MLKit人脸检测
- MediaPipe人脸网格
- CameraX相机框架
- Room数据库
- Kotlin协程
2. 核心实现
2.1 人脸检测配置
private fun createFaceDetector(): FaceDetector {
val options = FaceDetectorOptions.Builder()
.setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_FAST)
.setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
.setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
.setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
.setMinFaceSize(0.15f)
.build()
return FaceDetection.getClient(options)
}
2.2 相机预览实现
private fun startCamera() {
val cameraProviderFuture = ProcessCameraProvider.getInstance(this)
cameraProviderFuture.addListener({
val cameraProvider = cameraProviderFuture.get()
val preview = Preview.Builder()
.setTargetResolution(targetResolution)
.build()
.also {
it.setSurfaceProvider(binding.viewFinder.surfaceProvider)
}
val imageAnalyzer = ImageAnalysis.Builder()
.setTargetResolution(targetResolution)
.setBackpressureStrategy(ImageAnalysis.STRATEGY_BLOCK_PRODUCER)
.build()
.also {
it.setAnalyzer(cameraExecutor, FaceAnalyzer())
}
val cameraSelector = CameraSelector.DEFAULT_FRONT_CAMERA
try {
cameraProvider.unbindAll()
cameraProvider.bindToLifecycle(
this, cameraSelector, preview, imageAnalyzer
)
} catch(exc: Exception) {
Log.e(TAG, "相机绑定失败", exc)
}
}, ContextCompat.getMainExecutor(this))
}
2.3 人脸特征提取
private suspend fun extractFaceFeatures(bitmap: Bitmap): FloatArray? {
return withContext(Dispatchers.IO) {
try {
val faceBitmap = cropFace(bitmap, faceMesh.boundingBox)
val processedBitmap = ImagePreprocessor.process(
faceBitmap,
shouldNormalizeLighting = true,
shouldEnhanceContrast = true,
shouldEqualizeHistogram = true
)
faceFeatureExtractor.extractFeatures(processedBitmap)
} catch (e: Exception) {
Log.e(TAG, "特征提取失败", e)
null
}
}
}
3. 性能优化
3.1 图像处理优化
- 使用YUV格式处理图像
- 实现图像缓存机制
- 优化人脸裁剪算法
3.2 内存管理
private fun cleanupResources() {
try {
if (::cameraExecutor.isInitialized && !cameraExecutor.isShutdown) {
cameraExecutor.shutdown()
}
currentFaceBitmap?.recycle()
currentFaceBitmap = null
latestBitmap?.recycle()
latestBitmap = null
collectedFeatures.clear()
} catch (e: Exception) {
Log.e(TAG, "资源清理失败", e)
}
}
3.3 多线程处理
private val processingMutex = Mutex()
private val processIntervalMs = 1000L
private suspend fun processFrame(bitmap: Bitmap) {
if (!processingMutex.tryLock()) return
try {
val currentTime = System.currentTimeMillis()
if (currentTime - lastProcessTime < processIntervalMs) return
// 处理逻辑
lastProcessTime = currentTime
} finally {
processingMutex.unlock()
}
}
4. 用户体验优化
4.1 采集模式切换
private fun updateCollectionModeUI() {
binding.apply {
autoCollectLayout.visibility = if (isAutoCollectMode) View.VISIBLE else View.GONE
manualCollectLayout.visibility = if (isAutoCollectMode) View.GONE else View.VISIBLE
if (isAutoCollectMode) {
tvStatus.text = "自动采集模式:请保持人脸在框内..."
} else {
Toast.makeText(this@FaceAutoCollectActivity,
"手动采集模式:请保持人脸在框内...",
Toast.LENGTH_SHORT).show()
}
}
}
4.2 人脸质量检测
private fun isValidFaceMesh(faceMesh: FaceMesh, imageProxy: ImageProxy): Boolean {
// 检查人脸角度
val faceAngle = calculateFaceAngle(faceMesh)
if (abs(faceAngle) > MAX_FACE_ANGLE) {
showHint("请保持正面朝向摄像头")
return false
}
// 检查人脸大小
val faceSize = calculateFaceSize(faceMesh, imageProxy)
if (faceSize < MIN_FACE_SIZE || faceSize > MAX_FACE_SIZE) {
showHint("请调整与摄像头的距离")
return false
}
return true
}
5. 项目总结
5.1 技术要点
- MLKit人脸检测API的使用
- CameraX相机框架的集成
- 人脸特征提取与匹配算法
- 性能优化与内存管理
- 用户体验优化
5.2 未来优化方向
- 支持多人脸检测
- 添加活体检测功能
- 优化特征提取算法
- 支持更多相机参数调节
- 添加云端同步功能