- 博客(15)
- 资源 (2)
- 收藏
- 关注
原创 GCN图卷积神经网络
图卷积网络(Graph Convolutional Networks,GCN)是一种基于图结构数据进行深度学习的方法。GCN 可以在图上进行节点分类、图分类、链接预测、图生成等任务,是当前图神经网络领域中非常重要的一种模型。
2023-02-26 22:11:09 663
原创 机器学习-奇异值分解
奇异值分解(singular value deomposition, SVD)是一种矩阵因子分解方法,是线性代数的概念。任意一个矩阵,可以表示为三个矩阵的乘积(因子分解)形式。矩阵的奇异值分解一定存在,但不唯一,可以看作是矩阵数据压缩的一种方法,即用因子分解的方式近似地表示原始矩阵,这种近似是在平方损失意义下的最优近似。...
2022-07-19 22:26:44 2409
原创 机器学习-支持向量机
支持向量机是一种二类分类模型。他的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还宝包括核技巧,使得它实质上是非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划问题,也等价于正则化的合页损失函数的最小化问题。 当训练数据线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机,又称为硬间隔支持向量机。 当训练数据近似线性可分时,通过软间隔最大化,学习一个线性的分类器,即线性支持向量机,又称软间隔支持向量机。
2022-07-05 22:15:22 458
原创 机器学习-朴素贝叶斯法
朴素贝叶斯法(naive Bayes)是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对于给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。...
2022-06-19 17:48:53 146
原创 机器学习-感知机
感知机是二类分类的线性分类模型,输入为是实例的特征向量,输出为实例的类别(取值-1和+1)。对应于输入空间中将实例划分为正负两类的分离超平面,属于判别模型。具有简单而易于实现的优点,分为原始形式和对偶形式。............
2022-06-13 22:37:08 172
原创 世界完全对称日计算
世界完全对称日昨天2020年2月2日,很多人发20200202,然后看了一下这个叫世界完全对称日,变准备口算一下下次对称日是什么时候,觉得麻烦,便编写了一个程序计算。和之前一篇blog日期问题相似,我们在这基础上,将输入的日期20200203这8个数组成的数字串,依次存储到数组中,即array[8] = {2,0,2,0,0,2,0,3}。这个的字符分片我用的是简单的除法和取余结合的操作。然...
2020-02-03 17:18:16 2138
原创 日期问题(间隔,星期)
日期问题这里带来两个日期问题:一是给定两个日期,输出相隔天数;二是给定日期输出星期;最后有一个一的扩展即给出日期输出一年的多少天。日期间隔问题输入两个日期如20200129—20191231八位数字字符串。输出两个日期的间隔天数。我采用Buf[]year[month][day]三维数组来存放数组下标(即年月日)对应于原点日期间隔的天数。这是Hash的思想,同时也是解决后面几道题目关键,这...
2020-01-29 22:08:18 472
原创 CCF CSP 20190301解答
试题分析(送分题)有序序列,无需再写排序算法。求最大值最小值只需根据序列单调性讨论中位数考虑奇偶性#include<stdio.h>void min_mid_max(int *a,int len) //求解最大值最小值中位数 { int mid; if((a[len-1] - a[0]) > 0) //判断数列单调性 { if(len%2...
2019-09-06 02:58:21 270
原创 JSP内置对象的应用---答题界面设计
JSP内置对象的应用—答题界面设计本设计是本人J2E的第一次实战实验。答题界面设计。1) 登陆界面登陆界面设计两个文本输入框,分别是学号和密码。在后期可以对接数据库实现一个完整的登陆界面。点击“登陆”进入答题界面图一 登陆界面2) 答题界面答题界面题型有单选题和多选题。在加上两个跳转按键,“提交”按键进入测评结果界面,“重置”按键返回登陆界面。图二 答题界面3) 结果界面结果公示...
2018-10-23 15:40:54 2492
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人